[1] A. Alonso, Application of an entry-exit tariff model to the gas transport system in Spain, Energy Policy 38 (9) (2010) 5133-5140. http://dx.doi.org/10.1016/j.enpol.2010.04.043 [2] J.T. Keller, Mergers of Germany's natural gas market areas: Is transmission capacity booked efficiently? Util. Policy 56 (2019) 104-119. http://dx.doi.org/10.1016/j.jup.2018.11.005 [3] M. Hallack, European Union regulation of gas transmission services: Challenges in the allocation of network resources through entry/exit schemes, Util. Policy 25 (2013) 23-32. http://dx.doi.org/10.1016/j.jup.2013.01.003 [4] Energy Information Administration - Office of Oil and Gas, Deliverability on the Interstate Natural Gas Pipeline System, University of North Texas Libraries, UNT Digital Library, DOE/EIA-0618(98), 1998[2022-12-01]. [5] L.I. Langelandsvik, W. Postvoll, B. Aarhus, K.K. Kaste, Accurate calculation of pipeline transport capacity, Proceedings to 24th World Gas Conference, Buenos Aires, Argentina, 2009. [6] O.G. Alvarez, H.A. Carranza, F. Pillon, Nominal gas pipeline transmission Capacity, A procedure to define nominal capacity, In: PSIG Annual Meeting, Williamsburg, Virginia, 2006. [7] J. Xiao, Gas transmission capability curve of natural gas system: concept and steady-state model, J. Nat. Gas Sci. Eng. 87 (2021) 103754. http://dx.doi.org/10.1016/j.jngse.2020.103754 [8] C.H. Song, Security region of natural gas pipeline network system: Concept, method and application, Energy 217 (2021) 119283. http://dx.doi.org/10.1016/j.energy.2020.119283 [9] European Union, Regulation (EC) No 715/2009 of the European Parliament and of the Council of 13 July 2009 on conditions for access to the natural gas transmission networks and repealing Regulation (EC) No 1775/2005, 2009. [10] L.E. Ruff, Rethinking gas markets: and capacity, Econ. Energy Environ. Policy 1 (3) (2012). DOI:10.5547/2160-5890.1.3.1. [11] A. Fügenschuh, B. Geißler, R. Gollmer, C. Hayn, R. Henrion, B. Hiller, J. Humpola, T. Koch, T. Lehmann, A. Martin, R. Mirkov, A. Morsi, J. Rövekamp, L. Schewe, M. Schmidt, R. Schultz, R. Schwarz, J. Schweiger, C. Stangl, M.C. Steinbach, B.M. Willert, Mathematical optimization for challenging network planning problems in unbundled liberalized gas markets, Energy Syst 5 (3) (2014) 449-473. http://dx.doi.org/10.1007/s12667-013-0099-8 [12] M.E. Pfetsch, A. Fügenschuh, B. Geißler, N. Geißler, R. Gollmer, B. Hiller, J. Humpola, T. Koch, T. Lehmann, A. Martin, A. Morsi, J. Rövekamp, L. Schewe, M. Schmidt, R. Schultz, R. Schwarz, J. Schweiger, C. Stangl, M.C. Steinbach, S. Vigerske, B.M. Willert, Validation of nominations in gas network optimization: Models, methods, and solutions, Optim. Methods Softw. 30 (1) (2015) 15-53. http://dx.doi.org/10.1080/10556788.2014.888426 [13] M. Labbé, F. Plein, M. Schmidt, Bookings in the European gas market: Characterisation of feasibility and computational complexity results, Optim Eng 21 (1) (2020) 305-334. http://dx.doi.org/10.1007/s11081-019-09447-0 [14] M. Labbé, F. Plein, M. Schmidt, J. Thürauf, Deciding feasibility of a booking in the European gas market on a cycle is in P for the case of passive networks, Networks 78 (2) (2021) 128-152. https://doi.org/10.1002/net.22003 [15] N. Thanh, A. Le Maitre, J. Ardeois, J.B. Joliot, An optimization tool for network capacities, In: PSIG Annul Meeting 2013, Prague, Czech Republic, 2013. [16] B. Casoetto,,, How to commercialize reliable capacities on a complex transmission network? J. Nat. Gas Sci. Eng. 3 (5) (2011) 657-663. http://dx.doi.org/10.1016/j.jngse.2011.07.001 [17] B. Hiller, A system to evaluate gas network capacities: Concepts and implementation, Eur. J. Oper. Res. 270 (3) (2018) 797-808. http://dx.doi.org/10.1016/j.ejor.2018.02.035 [18] L. Schewe, M. Schmidt, J. Thürauf, Computing technical capacities in the European entry-exit gas market is NP-hard, Ann Oper Res 295 (1) (2020) 337-362. http://dx.doi.org/10.1007/s10479-020-03725-2 [19] K.T. Midthun, Optimization models for liberalized natural gas markets, Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim, 2007. [20] H. Üster,,, Optimization for design and operation of natural gas transmission networks, Appl. Energy 133 (2014) 56-69. http://dx.doi.org/10.1016/j.apenergy.2014.06.042 [21] S.M. Wu,,, Model relaxations for the fuel cost minimization of steady-state gas pipeline networks, Math. Comput. Model. 31 (2-3) (2000) 197-220. http://dx.doi.org/10.1016/S0895-7177(99)00232-0 [22] M. Schmidt, M.C. Steinbach, B.M. Willert, High detail stationary optimization models for gas networks, Optim Eng 16 (1) (2015) 131-164. http://dx.doi.org/10.1007/s11081-014-9246-x [23] W. Tom, B. Hiller, T. Walther, Modelling compressor stations in gas networks, ZIB-Report 17-67, Berlin, Germany, 2018 [24] R.Z. Ríos-Mercado,,, Optimization problems in natural gas transportation systems: A state-of-the-art review, Appl. Energy 147 (2015) 536-555. http://dx.doi.org/10.1016/j.apenergy.2015.03.017 [25] Q. Chen, Multi-objective transient peak shaving optimization of a gas pipeline system under demand uncertainty, Comput. Chem. Eng. 147 (2021) 107260. http://dx.doi.org/10.1016/j.compchemeng.2021.107260 [26] K. Liu, S.R. Kazi, L.T. Biegler, B.J. Zhang, Q.L. Chen, Dynamic optimization for gas blending in pipeline networks with gas interchangeability control, AIChE J. 66 (5) (2020): 16908. https://doi.org/10.1002/aic.16908 [27] K.E. Starling, Fluid thermodynamic properties for light petroleum systems, Houston, Gulf Pub. Co. 1973. [28] O. Kröger, C. Coffrin, H. Hijazi, H. Nagarajan, Juniper: An open-source nonlinear branch-and-bound solver in julia. Integration of Constraint Programming, Artificial Intelligence, and Operations Research. Cham: Springer International Publishing, 377-386 (2018). [29] A. Wächter, L.T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Math. Program. 106 (1) (2006) 25-57. http://dx.doi.org/10.1007/s10107-004-0559-y |