[1] F. Liu, X.Y. Wang, W. Li, G.F. Jiang, C. Kong, Antibacterial and corrosion protection properties of SA-CuZnO@ODA-GO composite in circulating cooling water, Environ Sci Pollut Res 28 (41) (2021) 57952–57969. [2] Y.L. Hu, C.M. Chen, S.T. Liu, State of art bio-materials as scale inhibitors in recirculating cooling water system: a review article, Water Sci. Technol. 85 (5) (2022) 1500–1521. [3] C.M. Chen, Y. Wang, S.T. Liu, R.R. Feng, X.J. Gu, C.X. Qiao, Research on the application of compound microorganism preparation in reusing urban reclaimed water in circulating cooling water system, Water Sci. Technol. 80 (9) (2019) 1763–1773. [4] A. Colombo, L. Oldani, S.P.Trasatti, Corrosion failure analysis of galvanized steel pipes in a closed water cooling system, Eng. Fail. Anal. 84 (2018) 46–58. [5] L. Liu, T.T. Cao, Q.W. Zhang, C.W.Cui, Organic phosphorus compounds as inhibitors of corrosion of carbon steel in circulating cooling water: weight loss method and thermodynamic and quantum chemical studies, Adv. Mater. Sci. Eng. 2018 (2018) 1–9. [6] H.Y. Wang, Y.L. Song, X.G. Chen, G.D. Tong, L.Y. Zhang, Microstructure and corrosion behavior of PEO-LDHs-SDS superhydrophobic composite film on magnesium alloy, Corros. Sci. 208 (2022) 110699. [7] M.M. Solomon, S.A. Umoren, M.A. Quraishi, M. Salman, Myristic acid based imidazoline derivative as effective corrosion inhibitor for steel in 15% HCl medium, J. Colloid Interface Sci. 551 (2019) 47–60. [8] E. Saei, B. Ramezanzadeh, R. Aminib, M.S. Kalajahi, Effects of combined organic and inorganic corrosion inhibitors on the nanostructure cerium based conversion coating performance on AZ31 magnesium alloy: morphological and corrosion studies, Corros. Sci. 127 (2017) 186–200. [9] W.X. Sun, Y.P. Liu, T.H. Li, S.W. Cui, S.G. Chen, Q.L. Yu, D.A. Wang, Anti-corrosion of amphoteric metal enhanced by MAO/corrosion inhibitor composite in acid, alkaline and salt solutions, J. Colloid Interface Sci. 554 (2019) 488–499. [10] K. Kermannezhad, A. Najafi Chermahini, M.M. Momeni, B.Rezaei, Application of amine-functionalized MCM-41 as pH-sensitive nano container for controlled release of 2-mercaptobenzoxazole corrosion inhibitor, Chem. Eng. J. 306 (2016) 849–857. [11] A. Umoren, M.M. Solomon, U.M. Eduok, I.B. Obot, U. Aniekemeabasi, Inhibition of mild steel corrosion in H2SO4 solution by coconut coir dust extract obtained from different solvent systems and synergistic effect of iodide ions: Ethanol and acetone extracts, J. Environ. Chem. Eng. 2 (2) (2014) 1048–1060. [12] S.A. Umoren, I.B. Obot, A.U. Israel, P.O. Asuquo, M.M. Solomon, U.M. Eduok, A.P.Udoh, Inhibition of mild steel corrosion in acidic medium using coconut coir dust extracted from water and methanol as solvents, J. Ind. Eng. Chem. 20 (5) (2014) 3612–3622. [13] I.B. Obot, S.A. Umoren, Z.M. Gasem, R. Suleiman, B.E. Ali, Theoretical prediction and electrochemical evaluation of vinylimidazole and allylimidazole as corrosion inhibitors for mild steel in 1 M HCl, J. Ind. Eng. Chem. 21 (2015) 1328–1339. [14] N.A. Odewunmi, S.A. Umoren, Z.M. Gasem, Utilization of watermelon rind extract as a green corrosion inhibitor for mild steel in acidic media, J. Ind. Eng. Chem. 21 (2015) 239–247. [15] S.C. Hayden, C. Chisholm, R.O. Grudt, J.A. Aguiar, W.M. Mook, P.G. Kotula, T.S. Pilyugina, D.C. Bufford, K. Hattar, T.J. Kucharski, I.M. Taie, M.L. Ostraat, K.L. Jungjohann, Localized corrosion of low-carbon steel at the nanoscale, Npj Mater. Degrad. 3 (1) (2019) 1–9. [16] M.H. Hamzah, S. Eavani, E. Rafiee, CoAl2O4/TiO2 nano composite as an anti-corrosion pigment, Mater. Chem. Phys. 242 (2020) 122495. [17] E.D. Michailidi, G. Bomis, A. Varoutoglou, G.Z. Kyzas, G. Mitrikas, A.C. Mitropoulos, E.K. Efthimiadou, E.P. Favvas, Bulk nanobubbles: production and investigation of their formation/stability mechanism, J. Colloid Interface Sci. 564 (2020) 371–380. [18] X.H. Zhang, H. Lhuissier, C. Sun, D. Lohse, Surface nanobubbles nucleate microdroplets, Phys. Rev. Lett. 112 (14) (2014) 144503. [19] A. Agarwal, W.J. Ng, Y. Liu, Principle and applications of microbubble and nanobubble technology for water treatment, Chemosphere 84 (9) (2011) 1175–1180. [20] Y.X. Liu, Y.P. Zhou, T.Z. Wang, J.C. Pan, B. Zhou, T. Muhammad, C.F. Zhou, Y.K. Li, Micro-nano bubble water oxygation: Synergistically improving irrigation water use efficiency, crop yield and quality, J. Clean. Prod. 222 (2019) 835–843. [21] A.K. Patel, R.R. Singhania, C.W. Chen, Y.S. Tseng, C.H. Kuo, C.H. Wu, cheng di Dong, Advances in micro- and nano bubbles technology for application in biochemical processes, Environ. Technol. Innov. 23 (2021) 101729. [22] M. Takahashi, K. Chiba, P. Li, Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus, J. Phys. Chem. B 111 (6) (2007) 1343–1347. [23] M.N. Lee, E.Y. Lee, D. Lee, B.J. Park, Stabilization and fabrication of microbubbles: applications for medical purposes and functional materials, Soft Matter 11 (11) (2015) 2067–2079. [24] Q.Y. Xu, M. Nakajima, Z.S. Liu, T. Shiina, Biosurfactants for microbubble preparation and application, Int. J. Mol. Sci. 12 (1) (2011) 462–475. [25] H. Wang, Y. Wang, Z. Lou, N. Zhu, H. Yuan, The degradation processes of refractory substances in nanofiltration concentrated leachate using micro-ozonation, Waste Manag. 69 (2017) 274–280. [26] W. Fan, Z. Zhou, W.T. Wang, M.X. Huo, L.L. Zhang, S.Y. Zhu, W. Yang, X.Z.Wang, Environmentally friendly approach for advanced treatment of municipal secondary effluent by integration of micro-nano bubbles and photocatalysis, J. Clean. Prod. 237 (2019) 117828. [27] P. Dhungana, B. Bhandari, Development of a continuous membrane nanobubble generation method applicable in liquid food processing, Int. J. Food Sci. Technol. 56 (9) (2021) 4268–4277. [28] S. Neethirajan, I. Kobayashi, M. Nakajima, D. Wu, S. Nandagopal, F. Lin, Microfluidics for food, agriculture and biosystems industries, Lab Chip 11 (9) (2011) 1574–1586. [29] A. Asuki, K. Arata, M. Nakagawa, S. Anzai, Nanobubbles as corrosion inhibitor in acidic geothermal fluid, Geothermics 89 (2021) 101962. [30] S. Calgaroto, K.Q. Wilberg, J. Rubio, On the nanobubbles interfacial properties and future applications in flotation, Miner. Eng. 60 (2014) 33–40. [31] X.Y. Zhang, Q.S. Wang, Z.X. Wu, D.P. Tao, An experimental study on size distribution and zeta potential of bulk cavitation nanobubbles, Int J Miner Metall Mater 27 (2) (2020) 152–161. [32] A. Niavarani, N.V. Priezjev, Modeling the combined effect of surface roughness and shear rate on slip flow of simple fluids, Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 81 (1 Pt 1) (2010) 011606. [33] T.H. Yen, Effects of wettability and interfacial nanobubbles on flow through structured nanochannels: an investigation of molecular dynamics, Mol. Phys. 113 (23) (2015) 3783–3795. [34] Y.L. Wang, B. Bhushan, Boundary slip and nanobubble study in micro/nanofluidics using atomic force microscopy, Soft Matter 6 (1) (2010) 29–66. [35] D.Y. Li, D.L. Jing, Y.L. Pan, B. Bhushan, X.Z. Zhao, Study of the relationship between boundary slip and nanobubbles on a smooth hydrophobic surface, Langmuir 32 (43) (2016) 11287–11294. [36] Water Treatment Chemical, Determination of corrosion inhibition performance of water treatment agents – rotating coupon method (GB/T 18175—2014), Standards Press of China, Beijing, 2014. [37] F.Y. Ushikubo, T. Furukawa, R. Nakagawa, M. Enari, Y. Makino, Y. Kawagoe, T. Shiina, S.Oshita, Evidence of the existence and the stability of nano-bubbles in water, Colloids Surf. A Physicochem. Eng. Aspects 361 (1–3) (2010) 31–37. [38] C. Leonard, J.H. Ferrasse, S. Lefevre, A. Viand, O. Boutin, Bubble rising velocity and bubble size distribution in columns at high pressure and temperature: from lab scale experiments to design parameters, Chem. Eng. Res. Des. 173 (2021) 108–118. [39] Z. Zhen, Y.W. Cheng, L.J. Wang, X. Li, Effect of temperature and pressure on the formation process of single-pore bubbles, CIESC J. 70 (2019) 3337–3345. (in Chinese). [40] M. Takahashi, ζ potential of microbubbles in aqueous solutions: electrical properties of the Gas-Water interface, J. Phys. Chem. B 109 (46) (2005) 21858–21864. [41] T.T. Bui, D.C. Nguyen, M. Han, Average size and zeta potential of nanobubbles in different reagent solutions, J. Nanoparticle Res.21 (8) (2019) 1–11. [42] S. Liu, Q.H. Wang, T.C. Sun, C.F. Wu, Y. Shi, The effect of different types of micro-bubbles on the performance of the coagulation flotation process for coke waste-water, J. Chem. Technol. Biotechnol. 87 (2) (2012) 206–215. [43] J.N. Meegoda, S.A. Hewage, J.H. Batagoda, Application of the diffused double layer theory to nanobubbles, Langmuir 35 (37) (2019) 12100–12112. [44] S. Aluthgun Hewage, J. Kewalramani, J.N.Meegoda, Stability of nanobubbles in different salts solutions, Colloids Surf. A Physicochem. Eng. Aspects 609 (2021) 125669. [45] X.T. Ma, M.B. Li, P. Pfeiffer, J. Eisener, C.D. Ohl, C. Sun, Ion adsorption stabilizes bulk nanobubbles, J. Colloid Interface Sci. 606 (Pt 2) (2022) 1380–1394. [46] A. Fateh, M. Aliofkhazraei, A.R.Rezvanian, Review of corrosive environments for copper and its corrosion inhibitors, Arab. J. Chem. 13 (1) (2020) 481–544. [47] D.F. Jiang, H. Xu, B. Deng, M.Y. Li, Z.N. Xiao, N.Q. Zhang, Effect of oxygenated treatment on corrosion of the whole steam-water system in supercritical power plant, Appl. Therm. Eng. 93 (2016) 1248–1253. [48] S. Liu, S. Oshita, Y. Makino, Q.H. Wang, Y. Kawagoe, T. Uchida, Oxidative capacity of nanobubbles and its effect on seed germination, ACS Sustainable Chem. Eng. 4 (3) (2016) 1347–1353. [49] K. Yasui, T. Tuziuti, W. Kanematsu, High temperature and pressure inside a dissolving oxygen nanobubble, Ultrason. Sonochem. 55 (2019) 308–312. [50] N. Guo, X.M. Mao, T. Liu, X.R. Hui, Z.W. Guo, B.W. Tan, K.Y. Shao, X.F. Li, Z.S. Zeng, Corrosion mechanism of copper in seawater containing the bacterial pyomelanin with redox activity, Corros. Sci. 204 (2022) 110407. [51] M.A. Fazal, A.S.M.A. Haseeb, H.H.Masjuki, Corrosion mechanism of copper in palm biodiesel, Corros. Sci. 67 (2013) 50–59. [52] X.H. Huang, S.T. Zhang, L.Y. Hu, The effect of pH on the efficiency of isoniazid as corrosion inhibitors of brass in 3.0% NaCl solution, Adv. Mater. Res. 311–313 (2011) 657–661. [53] C.T. Kwok, P.K. Wong, H.C. Man, F.T. Cheng, Effect of pH on corrosion behavior of CuCrZr in solution without and with NaCl, J. Nucl. Mater. 394 (1) (2009) 52–62. [54] L.N. Zhao, J.D. Feng, X.Y. Wang, Z.C. Wang, Synthesis of self-assembled needle-shaped calcium carbonate superstructures, Chin. Sci. Bull. 55 (20) (2010) 2131–2135. [55] X.D. Tang, F.Q. Yu, W.J. Guo, T.S. Wang, Q. Zhang, Q.Q. Zhu, X. Zhang, M.S. Pei, A facile procedure to fabricate nano calcium carbonate-polymer-based superhydrophobic surfaces, New J. Chem. 38 (6) (2014) 2245–2249. [56] G.R. Osorio-Celestino, M. Hernandez, D. Solis-Ibarra, S. Tehuacanero-Cuapa, A. Rodríguez-Gómez, A.P. Gómora-Figueroa, Influence of calcium scaling on corrosion behavior of steel and aluminum alloys, ACS Omega 5 (28) (2020) 17304–17313. [57] P.L. Jiang, R.Q. Hou, S.J. Zhu, S.K. Guan, A robust calcium carbonate (CaCO3) coating on biomedical MgZnCa alloy for promising corrosion protection, Corros. Sci. 198 (2022) 110124. [58] R. Raj, Y. Morozov, L. Calado, M. Taryba, R. Kahraman, A. Shakoor, M. Montemor, Inhibitor loaded calcium carbonate microparticles for corrosion protection of epoxy-coated carbon steel, Electrochimica Acta 319 (C) (2019) 801–812. [59] T.X. Wang, S.Q. Jia, Y.C. Xu, Y.Q. Dong, Y.T. Guo, Z.L. Huang, G.Y. Li, J.S. Lian, Improving the corrosion resistance and biocompatibility of magnesium alloy via composite coatings of calcium phosphate/carbonate induced by silane, Prog. Org. Coat. 163 (2022) 106653. [60] H. Zuo, F. Javadpour, S.C. Deng, H.B. Li, Liquid slippage on rough hydrophobic surfaces with and without entrapped bubbles, Phys. Fluids 32 (8) (2020) 082003. [61] E. Karatay, A.S. Haase, C.W. Visser, C. Sun, D. Lohse, P.A. Tsai, R.G. Lammertink, Control of slippage with tunable bubble mattresses, Proc. Natl. Acad. Sci. USA 110 (21) (2013) 8422–8426. |