[1] T. Nur, G. Naidu, P. Loganathan, J. Kandasamy, S. Vigneswaran, Rubidium recovery using potassium cobalt hexacyanoferrate sorbent, Desalin. Water Treat. 57 (55) (2016) 26577–26585, https://doi.org/10.1080/19443994.2016.1185383. [2] Z. Shi, X.M. Du, S.Q. Wang, Y.F. Guo, T.L. Deng, Application status of rubidium, cesium and research situation of its separation from brine with solvent extraction, IOP Conf. Ser.: Mater. Sci. Eng. 274 (2017) 12081. [3] Z. Jia, X. Cheng, Y. Guo, L. Tu, In-situ preparation of iron(III) hexacyanoferrate nano-layer on polyacrylonitrile membranes for cesium adsorption from aqueous solutions, Chem. Eng. J. 325 (2017) 513–520. [4] X. Liu, G.R. Chen, D.J. Lee, T. Kawamoto, H. Tanaka, M.L. Chen, Y.K. Luo, Adsorption removal of cesium from drinking waters: A mini review on use of biosorbents and other adsorbents, Bioresour. Technol. 160 (2014) 142–149. [5] H. Rogers, J. Bowers, D. Gates-Anderson, An isotope dilution-precipitation process for removing radioactive cesium from wastewater, J. Hazard. Mater. 243 (2012) 124–129. [6] S. Khandaker, M.F. Chowdhury, M.R. Awual, A. Islam, T. Kuba, Efficient cesium encapsulation from contaminated water by cellulosic biomass based activated wood charcoal, Chemosphere 262 (2021) 127801. [7] J. Bok-Badura, A. Kazek-Kęsik, K. Karoń, A. Jakóbik-Kolon, Highly efficient copper hexacyanoferrate-embedded pectin sorbent for radioactive cesium ions removal, Water Resour. Ind. 28 (2022) 100190. [8] H. Deng, Y. Li, Y. Huang, X. Ma, L. Wu, T. Cheng, An efficient composite ion exchanger of silica matrix impregnated with ammonium molybdophosphate for cesium uptake from aqueous solution, Chem. Eng. J. 286 (2016) 25–35. [9] T.J. Stockmann, J. Zhang, A.M. Montgomery, Z. Ding, Electrochemical assessment of water|ionic liquid biphasic systems towards cesium extraction from nuclear waste, Anal. Chimica Acta 821 (2014) 41–47. [10] J.L. Wang, S.T. Zhuang, Removal of cesium ions from aqueous solutions using various separation technologies, Rev. Environ. Sci. Biotechnol. 18 (2) (2019) 231–269. [11] X. Du, X.G. Hao, Z.D. Wang, G.Q. Guan, Electroactive ion exchange materials: Current status in synthesis, applications and future prospects, J. Mater. Chem. A 4 (17) (2016) 6236–6258. [12] J. Luo, X. Du, F. Gao, Y. Yang, X. Hao, S. Li, X. Hao, K. Tang, G. Guan, Iodide ion trapping polypyrrole film: Selective capture of iodide ions by electrochemically switched ion extraction (ESIE) process, Chem. Eng. J. 380 (2020) 122529. [13] J. Niu, W. Yan, J. Du, X. Hao, F. Wang, Z. Wang, G. Guan, An electrically switched ion exchange film with molecular coupling synergistically-driven ability for recovery of Ag+ ions from wastewater, Chem. Eng. J. 389 (2020) 124498. [14] Y.Y. Yang, X. Du, A. Abudula, Z.L. Zhang, X.L. Ma, K. Tang, X.G. Hao, G. Guan, Highly efficient defluoridation using a porous MWCNT@NiMn-LDH composites based on ion transport of EDL coupled with ligand exchange mechanism, Sep. Purif. Technol. 223 (2019) 154–161. [15] P.L. Zhang, J.L. Zheng, Z.D. Wang, X. Du, F.F. Gao, X.G. Hao, G.Q. Guan, C.C. Li, S.B. Liu, An in situ potential-enhanced ion transport system based on FeHCF-PPy/PSS membrane for the removal of Ca2+ and Mg2+ from dilute aqueous solution, Ind. Eng. Chem. Res. 55 (21) (2016) 6194–6203. [16] X. Zhao, S. Yang, Y. Hou, H. Gao, Y. Wang, D.A. Gribble, V.G. Pol, Recent progress on key materials and technical approaches for electrochemical lithium extraction processes, Desalination 546 (2023) 116189. [17] H.B. Zhan, Y.J. Qiao, Z.Q. Qian, J. Li, Z.J. Wu, X.G. Hao, Z. Liu, Manganese-based spinel adsorbents for lithium recovery from aqueous solutions by electrochemical technique, J. Ind. Eng. Chem. 114 (2022) 142–150. [18] X. Du, G.Q. Guan, X.M. Li, A.D. Jagadale, X.L. Ma, Z.D. Wang, X.G. Hao, A. Abudula, A novel electroactive λ-MnO2/PPy/PSS core-shell nanorod coated electrode for selective recovery of lithium ions at low concentration, J. Mater. Chem. A 4 (36) (2016) 13989–13996. [19] P.F. Ma, J.W. Zhu, X. Du, Y.Y. Yang, X.Q. Hao, X.W. An, X.G. Hao, C. Prestigiacomo, Specific separation and recovery of phosphate anions by a novel NiFe-LDH/rGO hybrid film based on electroactivity-variable valence, J. Colloid Interface Sci. 626 (2022) 47–58. [20] B. Sun, X. Hao, Z. Wang, G. Guan, Z. Zhang, Y. Li, S. Liu, Separation of low concentration of cesium ion from wastewater by electrochemically switched ion exchange method: Experimental adsorption kinetics analysis, J. Hazard. Mater. 233-234 (2012) 177–183. [21] F. Gao, X. Du, X. Hao, S. Li, J. Zheng, Y. Yang, N. Han, G. Guan, Electrical double layer ion transport with cell voltage-pulse potential coupling circuit for separating dilute lead ions from wastewater, J. Membr. Sci. 535 (2017) 20–27. [22] X. Du, H. Zhang, X.G. Hao, G.Q. Guan, A. Abudula, Facile preparation of ion-imprinted composite film for selective electrochemical removal of nickel(II) ions, ACS Appl. Mater. Interfaces 6 (12) (2014) 9543–9549. [23] W. Ma, X. Du, M. Liu, F. Gao, X. Ma, Y. Li, G. Guan, X. Hao, A conductive chlorine ion-imprinted polymer threaded in metal–organic frameworks for electrochemically selective separation of chloride ions, Chem. Eng. J. 412 (2021) 128576. [24] Y.J. Cheng, J. Wang, J.H. Luo, X.W. An, P.F. Wang, X.L. Ma, X. Du, X.G. Hao, BiOI with inherent photo/electric biactivity recovery I– by novel photoassisted electrochemically switched ion exchange technology, Ind. Eng. Chem. Res. 61 (26) (2022) 9394–9404. [25] J. Wang, X. Du, X.G. Hao, J.H. Luo, X.G. Hao, Q. Cao, G.Q. Guan, J. Li, Z. Liu, Y.G. Li, A. Abudula, A novel photo-assisted electrochemically switched ion exchange technology for selective recovery of bromide ions, Chem. Eng. J. 427 (2022) 131693. [26] M.F. Jiang, X.F. Zhang, X. Du, X.W. An, F.F. Gao, X.G. Hao, G.Q. Guan, Z. Liu, J. Li, A. Abudula, An electrochemically induced dual-site adsorption composite film of Ni-MOF derivative/NiCo LDH for selective bromide-ion extraction, Sep. Purif. Technol. 283 (2022) 120175. [27] X.Y. Song, J.J. Niu, W.J. Yan, X. Li, X.G. Hao, G. Guan, Z.D. Wang, An electroactive BiOBr@PPy hybrid film with synergistic effect for electrochemically switched capture of bromine ions from aqueous solutions, Sep. Purif. Technol. 290 (2022) 120845. [28] W. Zhang, X. Song, L. Ling, Z. Wang, X. Hao, G. Guan, Terminal-dependent ion recognition of BiOBr/PPy hybrid film with befitting absorption function for rapidly selective bromine ions removal, Chem. Eng. J. 457 (2023) 141213. [29] J. Luo, X. Du, F. Gao, P. Ma, X. Hao, G. Guan, O. Scialdone, J. Li, Electrochemically triggered iodide-vacancy BiOI film for selective extraction of iodide ion from aqueous solutions, Sep. Purif. Technol. 259 (2021) 118120. [30] J. Qiao, W.B. Ma, X. Du, X.L. Ma, Z. Liu, J. Li, G.Q. Guan, A. Abudula, X.G. Hao, ZIF-8 derived carbon with confined sub-nanometer pores for electrochemically selective separation of chloride ions, Sep. Purif. Technol. 295 (2022) 121222. [31] J. Cui, H. Xu, Y. Ding, J. Tian, X. Zhang, G. Jin, Recovery of lithium using H4Mn3.5Ti1.5O12/reduced graphene oxide/polyacrylamide composite hydrogel from brine by Ads-ESIX process, Chin. J. Chem. Eng. 44 (2022) 20–28. [32] T. Chen, G. Jin, G. Meng, X. Lv, Y. Yu, C. Chen, Recovery of cesium using NiHCF/NiAl-LDHs/CCFs composite by two-stage membrane-free ESIX process, J. Environ. Chem. Eng. 7 (1) (2019) 102799. [33] S. Naeimi, H. Faghihian, Performance of novel adsorbent prepared by magnetic metal–organic framework (MOF) modified by potassium nickel hexacyanoferrate for removal of Cs+ from aqueous solution, Sep. Purif. Technol. 175 (2017) 255–265. [34] L.M. Xu, Z.B. Ding, Y.Y. Chen, X.T. Xu, Y. Liu, J.B. Li, T. Lu, L.K. Pan, Carbon nanotube bridged nickel hexacyanoferrate architecture for high-performance hybrid capacitive deionization, J. Colloid Interface Sci. 630 (Pt B) (2023) 372–381. [35] F. Liu, Y.T. Liu, M.R. Moghareh Abed, K. Li, Progress in the production and modification of PVDF membranes, J. Membr. Sci. 375 (1–2) (2011) 1–27. [36] W.G. Buxton, S.G. King, V. Stolojan, Suppression of self-discharge in aqueous supercapacitor devices incorporating highly polar nanofiber separators, Energy Environ. Mater. (2022), https://doi.org/10.1002/eem2.12363. [37] A. Casanova, A. Gomis-Berenguer, A. Canizares, P. Simon, D. Calzada, C.O. Ania, Carbon black as conductive additive and structural director of porous carbon gels, Materials 13 (1) (2020) 217. [38] J. Sun, Y. Li, H.O. Song, H.X. Li, Q. Lai, G. Egabaierdi, Q.M. Li, S.P. Zhang, H. He, A.M. Li, Enhanced capacitive deionization properties of activated carbon doped with carbon nanotube-bridged molybdenum disulfide, Chemosphere 310 (2023) 136740. [39] S. Liao, C. Xue, Y. Wang, J. Zheng, X. Hao, G. Guan, A. Abuliti, H. Zhang, G. Ma, Simultaneous separation of iodide and cesium ions from dilute wastewater based on PPy/PTCF and NiHCF/PTCF electrodes using electrochemically switched ion exchange method, Sep. Purif. Technol. 139 (2015) 63–69. [40] L.W. Duresa, D.H. Kuo, F.T. Bekena, W.L. Kebede, Simple room temperature synthesis of oxygen vacancy-rich and in-doped BiOBr nanosheet and its highly enhanced photocatalytic activity under visible-light irradiation, J. Phys. Chem. Solids 156 (2021) 110132. [41] Y. Wang, J.Z. Meng, S.J. Jing, K.W. Wang, C.G. Ban, Y.J. Feng, Y.Y. Duan, J.P. Ma, L.Y. Gan, X.Y. Zhou, Origin of Bismuth-rich strategy in bismuth oxyhalide photocatalysts, Energy Environ. Mater. (2022) e12432. [42] F.F. Gao, X. Du, X.G. Hao, S.S. Li, J.L. Zheng, Y.Y. Yang, N.C. Han, G.Q. Guan, A potential-controlled ion pump based on a three-dimensional PPy@GO membrane for separating dilute lead ions from wastewater, Electrochim. Acta (2017) 434–442. [43] Z. Wang, Y. Feng, X. Hao, W. Huang, G. Guan, A. Abudula, An intelligent displacement pumping film system: A new concept for enhancing heavy metal ion removal efficiency from liquid waste, J. Hazard. Mater. 274 (2014) 436–442. [44] M. Ishizaki, S. Akiba, A. Ohtani, Y. Hoshi, K. Ono, M. Matsuba, T. Togashi, K. Kananizuka, M. Sakamoto, A. Takahashi, T. Kawamoto, H. Tanaka, M. Watanabe, M. Arisaka, T. Nankawa, M. Kurihara, Proton-exchange mechanism of specific Cs+ adsorption via lattice defect sites of Prussian blue filled with coordination and crystallization water molecules, Dalton Trans. 42 (45) (2013) 16049–16055. [45] M.N. Nguyen, M. Yaqub, S. Kim, W. Lee, Optimization of cesium adsorption by Prussian blue using experiments and gene expression modeling, J. Water Process. Eng. 41 (2021) 102084. [46] S. Eun, H.J. Hong, H. Kim, H.S. Jeong, S. Kim, J. Jung, J. Ryu,, Prussian blue-embedded carboxymethyl cellulose nanofibril membranes for removing radioactive cesium from aqueous solution, Carbohydr. Polym. 235 (2020) 115984. [47] M. Khairy, K.G. Mahmoud, F.A. Rashwan, H.M. El-Sagher, C.E. Banks, Nanosized nickel hexacyanoferrate modified screen-printed electrodes as flexible supercabattery platforms: Influence of annealing temperatures and supporting electrolytes, J. Energy Storage 46 (2022) 103872. [48] S. Wang, P. He, M. He, L. Jia, N. Chen, M. Dong, H. Liu, X. Wang, Y. Zhang, L. Zhou, J. Gao, H. Lei, F. Dong, Content-dependent electroactivity enhancement of nickel hexacyanoferrate/multi-walled carbon nanotubes electrocatalyst: Cost-efficient construction and promising application for alkaline water splitting, Int. J. Hydrog. Energy 45 (4) (2020) 2754–2764. [49] Y. Xu, F. Duan, Y. Li, H. Cao, J. Chang, H. Pang, J. Chen, Enhanced desalination performance in asymmetric flow electrode capacitive deionization with nickel hexacyanoferrate and activated carbon electrodes, Desalination 514 (2021) 115172. [50] Y.H. Wang, Y.J. Yang, X.G. Hao, X.R. Zhang, Z.L. Zhang, G.Z. Ma, pH-controlled morphological structure and electrochemical performances of polyaniline/nickel hexacyanoferrate nanogranules during electrochemical deposition, J. Solid State Electrochem. 18 (10) (2014) 2885–2892. [51] Y. Salamat, C.H. Hidrovo, Significance of the micropores electro-sorption resistance in capacitive deionization systems, Water Res. 169 (2020) 115286. [52] C.Y. Sun, F. Zhang, J.F. Cao, A ‘build-bottle-around-ship’ method to encapsulate ammonium molybdophosphate in zeolite Y. An efficient adsorbent for cesium, J. Colloid Interface Sci. 455 (2015) 39–45. [53] Z.H. Xu, M. Rong, Q.Y. Meng, H.Y. Yao, S. Ni, L. Wang, H. Xing, H.N. Qu, L.R. Yang, H.Z. Liu, Fabrication of hypercrosslinked hydroxyl-rich solid phase extractants for cesium separation from the salt lake brine, Chem. Eng. J. 400 (2020) 125991. [54] Y.J. Gao, M.L. Feng, B. Zhang, Z.F. Wu, Y. Song, X.Y. Huang, An easily synthesized microporous framework material for the selective capture of radioactive Cs+ and Sr2+ ions, J. Mater. Chem. A 6 (9) (2018) 3967–3976. [55] J.Y. Su, G.P. Jin, T. Chen, X.D. Liu, C.N. Chen, J.J. Tian, The characterization and application of Prussian blue at graphene coated carbon fibers in a separated adsorption and electrically switched ion exchange desorption processes of cesium, Electrochim. Acta 230 (2017) 399–406. [56] F.P. Chen, G.P. Jin, S.Y. Peng, X.D. Liu, J.J. Tian, Recovery of cesium from residual salt lake brine in Qarham playa of Qaidam Basin with Prussian blue functionalized graphene/carbon fibers composite, Colloids Surf. A 509 (2016) 359–366. |