[1] W. Fu, K. Zhang, J.T. Wu, Flammability limits of benzene, toluene, xylenes from 373 K to 473 K and flame-retardant effect of steam on benzene series, Process Saf. Environ. Prot. 137(2020)328-339. [2] A.M. Niziolek, O. Onel, Y.A. Guzman, C.A. Floudas, Biomass-based production of benzene, toluene, and xylenes via methanol:Process synthesis and deterministic global optimization, Energy Fuels 30(6)(2016)4970-4998. [3] J.R. Jiang, X. Feng, M.B. Yang, Y.F. Wang, Comparative technoeconomic analysis and life cycle assessment of aromatics production from methanol and naphtha, J. Clean. Prod. 277(2020)123525. [4] T. Li, T. Shoinkhorova, J. Gascon, J. Ruiz-Martínez, Aromatics production via methanol-mediated transformation routes, ACS Catal. 11(13)(2021)7780-7819. [5] G.T. Jaya, R. Insyani, J. Park, A.F. Barus, M.G. Sibi, V. Ranaware, D. Verma, J. Kim, One-pot conversion of lignocellulosic biomass to ketones and aromatics over a multifunctional Cu-Ru/ZSM-5 catalyst, Appl. Catal. B 312(2022)121368. [6] L.J. Zhang, S. Zhang, X. Hu, M. Gholizadeh, Progress in application of the pyrolytic lignin from pyrolysis of biomass, Chem. Eng. J. 419(2021)129560. [7] Q.F. Che, M.J. Yang, X.H. Wang, Q. Yang, Y.Q. Chen, X. Chen, W. Chen, J.H. Hu, K. Zeng, H.P. Yang, H.P. Chen, Preparation of mesoporous ZSM-5 catalysts using green templates and their performance in biomass catalytic pyrolysis, Bioresour. Technol. 289(2019)121729. [8] L.L. Yi, H. Liu, S.H. Li, M.Y. Li, G.Y. Wang, G.Z. Man, H. Yao, Catalytic pyrolysis of biomass wastes over org-CaO/nano-ZSM-5 to produce aromatics:Influence of catalyst properties, Bioresour. Technol. 294(2019)122186. [9] X. Chen, Z.H. Liu, S.J. Li, S.W. Xia, N. Cai, W. Chen, Y.Q. Chen, H.P. Yang, X.H. Wang, H.P. Chen, Catalytic pyrolysis of biomass to produce aromatic hydrocarbons over calcined dolomite and ZSM-5, Energy Fuels 35(20)(2021)16629-16636. [10] R.H. Liu, M.M. Rahman, M. Sarker, M.Y. Chai, C. Li, J.M. Cai, A review on the catalytic pyrolysis of biomass for the bio-oil production with ZSM-5:Focus on structure, Fuel Process. Technol. 199(2020)106301. [11] F. Nardella, S. Bellavia, M. Mattonai, E. Ribechini, Co-pyrolysis of biomass and plastic:Synergistic effects and estimation of elemental composition of pyrolysis oil by analytical pyrolysis-gas chromatography/mass spectrometry, Bioresour. Technol. 354(2022)127170. [12] D.V. Suriapparao, R. Gautam, L.R. Jeeru, Analysis of pyrolysis index and reaction mechanism in microwave-assisted ex-situ catalytic co-pyrolysis of agro-residual and plastic wastes, Bioresour. Technol. 357(2022)127357. [13] S.Q. Wang, Z. Wan, Y. Han, Y. Jiao, Z.H. Li, P. Fu, N. Li, A.D. Zhang, W.M. Yi, A review on lignin waste valorization by catalytic pyrolysis:Catalyst, reaction system, and industrial symbiosis mode, J. Environ. Chem. Eng. 11(1)(2023)109113. [14] H.Y. Zhang, R. Xiao, J.L. Nie, B.S. Jin, S.S. Shao, G.M. Xiao, Catalytic pyrolysis of black-liquor lignin by co-feeding with different plastics in a fluidized bed reactor, Bioresour. Technol. 192(2015)68-74. [15] Q. Bu, K. Chen, W. Xie, Y.Y. Liu, M.J. Cao, X.H. Kong, Q.L. Chu, H.P. Mao, Hydrocarbon rich bio-oil production, thermal behavior analysis and kinetic study of microwave-assisted co-pyrolysis of microwave-torrefied lignin with low density polyethylene, Bioresour. Technol. 291(2019)121860. [16] W.J. Dai, L.N. Zhang, R.Z. Liu, G.J. Wu, N.J. Guan, L.D. Li, Plate-like ZSM-5 zeolites as robust catalysts for the cracking of hydrocarbons, ACS Appl. Mater. Interfaces 14(9)(2022)11415-11424. [17] S. Vichaphund, P. Wimuktiwan, V. Sricharoenchaikul, D. Atong, In situ catalytic pyrolysis of Jatropha wastes using ZSM-5 from hydrothermal alkaline fusion of fly ash, J. Anal. Appl. Pyrol. 139(2019)156-166. [18] M. Chareonpanich, T. Namto, P. Kongkachuichay, J. Limtrakul, Synthesis of ZSM-5 zeolite from lignite fly ash and rice husk ash, Fuel Process. Technol. 85(15)(2004)1623-1634. [19] F. Pan, X.C. Lu, Q.S. Zhu, Z.M. Zhang, Y. Yan, T.Z. Wang, S.W. Chen, A fast route for synthesizing nano-sized ZSM-5 aggregates, J. Mater. Chem. A 2(48)(2014)20667-20675. [20] H. Jia, T. Du, X. Fang, H. Gong, Z.Y. Qiu, Y.N. Li, Y.S. Wang, Synthesis of template-free ZSM-5 from rice husk ash at low temperatures and its CO2 adsorption performance, ACS Omega 6(5)(2021)3961-3972. [21] T.L. Ye, Z.Q. Chen, Y.X. Chen, H.F. Xie, Q. Zhong, H.X. Qu, Green synthesis of ZSM-5 zeolite for selective catalytic reduction of NO via template-free method from tailing residue, J. Environ. Chem. Eng. 10(3)(2022)107766. [22] M.H. Liu, Y. Xia, Y.D. Zhao, Z.G. Cao, Immobilization of Cu (Ⅱ), Ni (Ⅱ) and Zn (Ⅱ) in silica fume blended Portland cement:Role of silica fume, Constr. Build. Mater. 341(2022)127772. [23] M.H. Mizan, T. Ueda, K. Matsumoto, Enhancement of the concrete-PCM interfacial bonding strength using silica fume, Constr. Build. Mater. 259(2020)119774. [24] J.Y. Xi, J.Z. Liu, K. Yang, S.H. Zhang, F.Y. Han, J.F. Sha, X. Zheng, Role of silica fume on hydration and strength development of ultra-high performance concrete, Constr. Build. Mater. 338(2022)127600. [25] A.M. EL-Rafei,, Preparation and characterization of mesoporous amorphous nano-silica and nano-cristobalite for value enhancement of low-cost Egyptian waste materials, Ceram. Int. 48(21)(2022)32185-32195. [26] Y.H. Wang, J.Y. Chen, X.R. Lei, Y. Ren, J. Wu, Preparation of high silica microporous zeolite SSZ-13 using solid waste silica fume as silica source, Adv. Powder Technol. 29(5)(2018)1112-1118. [27] X.F. Wang, F.W. Li, A. Ali, H.S. Gu, H.B. Fu, Z.X. Li, H.F. Lin, Preparation of sodium silicate/red mud-based ZSM-5 with glucose as a second template for catalytic cracking of waste plastics into useful chemicals, RSC Adv. 12(34)(2022)22161-22174. [28] F.W. Li, S.L. Ding, Z.H. Wang, Z.X. Li, L. Li, C. Gao, Z. Zhong, H.F. Lin, C.J. Chen, Production of light olefins from catalytic cracking bio-oil model compounds over La2O3-modified ZSM-5 zeolite, Energy Fuels 32(5)(2018)5910-5922. [29] Z.W. Wang, K.G. Burra, T.Z. Lei, A.K. Gupta, Co-pyrolysis of waste plastic and solid biomass for synergistic production of biofuels and chemicals-A review, Prog. Energy Combust. Sci. 84(2021)100899. [30] X.F. Xue, Y.W. Liu, L. Wu, X.Z. Pan, J. Liang, Y.F. Sun, Catalytic fast pyrolysis of maize straw with a core-shell ZSM-5@SBA-15 catalyst for producing phenols and hydrocarbons, Bioresour. Technol. 289(2019)121691. [31] M.H. Nada, S.C. Larsen, Insight into seed-assisted template free synthesis of ZSM-5 zeolites, Microporous Mesoporous Mater. 239(2017)444-452. [32] F. Jokar, S.M. Alavi, M. Rezaei, Investigating the hydroisomerization of n-pentane using Pt supported on ZSM-5, desilicated ZSM-5, and modified ZSM-5/MCM-41, Fuel 324(2022)124511. [33] D.V. Peron, V.L. Zholobenko, J.H.S. de Melo, M. Capron, N. Nuns, M.O. de Souza, L.A. Feris, N.R. Marcilio, V.V. Ordomsky, A.Y. Khodakov, External surface phenomena in dealumination and desilication of large single crystals of ZSM-5 zeolite synthesized from a sustainable source, Microporous Mesoporous Mater. 286(2019)57-64. [34] M. Matsuoka, K. Iino, H.J. Chen, Y. Yamasaki, G. Marta, S. Coluccia, M. Anpo, Preparation and characterization of Pt/Al-ZSM-5 catalysts and their reactivities for the oxidation of CO with N2O at low temperatures, Catal. Lett. 102(3-4)(2005)149-152. [35] L.J. Xu, Y.Y. Yuan, Q.A. Han, L. Dong, L. Chen, X.M. Zhang, L. Xu, High yield synthesis of nanoscale high-silica ZSM-5 zeolites via interzeolite transformation with a new strategy, Cat. Sci. Technol. 10(23)(2020)7904-7913. [36] R.Z. Zhang, P.R. Zhao, L.N. Han, J.C. Wang, L.F. Zhao, Seed-assisted templatefree synthesis of nano-sized ZSM-5 via two-stage crystallization with related investigation of mechanism, Microporous Mesoporous Mater. 312(2021)110754. [37] K.Y. Yang, F. Zhou, H.X. Ma, C.T. Liu, F.W. Ma, G. Wu, Preparation of nanocrystalline ZSM-5 and its catalytic performance in fast pyrolysis of cellulose to produce aromatic hydrocarbons, Microporous Mesoporous Mater. 331(2022)111679. [38] M.J. Xing, L. Zhang, J. Cao, Y.L. Han, F. Wang, K. Hao, L.H. Huang, Z.C. Tao, X.D. Wen, Y. Yang, Y.W. Li, Impact of the aluminum species state on Al pairs formation in the ZSM-5 framework, Microporous Mesoporous Mater. 334(2022)111769. [39] J.Q. Li, D.Z. Han, Z.Y. Zi, T. He, G.B. Liu, Z.Q. Wang, J.L. Wu, J.H. Wu, The synthesis of H[Fe, Al]ZSM-5 zeolites with uniform nanocrystals for dimethyl ether to gasoline reaction, Fuel 313(2022)122643. [40] F.Q. Chen, J. Hao, Y.Y. Yu, D.G. Cheng, X.L. Zhan, The influence of external acid strength of hierarchical ZSM-5 zeolites on n-heptane catalytic cracking, Microporous Mesoporous Mater. 330(2022)111575. [41] R.H. Liu, M.M. Rahman, C. Li, M.Y. Chai, M. Sarker, Y.C. Wang, J.M. Cai, Catalytic pyrolysis of microcrystalline cellulose extracted from rice straw for high yield of hydrocarbon over alkali modified ZSM-5, Fuel 285(2021)119038. [42] W.J. Chen, J.F. Lu, C.S. Zhang, Y.Y. Xie, Y.H. Wang, J. Wang, R.Q. Zhang, Aromatic hydrocarbons production and synergistic effect of plastics and biomass via one-pot catalytic co-hydropyrolysis on HZSM-5, J. Anal. Appl. Pyrol. 147(2020)104800. [43] X. Xiao, B. Sun, P. Wang, X.Q. Fan, L. Kong, Z.A. Xie, B.N. Liu, Z. Zhao, Tuning the density of Brønsted acid sites on mesoporous ZSM-5 zeolite for enhancing light olefins selectivity in the catalytic cracking of n-octane, Microporous Mesoporous Mater. 330(2022)111621. [44] V. Blay, B. Louis, R. Miravalles, T. Yokoi, K.A. Peccatiello, M. Clough, B. Yilmaz, Engineering zeolites for catalytic cracking to light olefins, ACS Catal. 7(10)(2017)6542-6566. [45] D.L. Guo, S.B. Wu, G.J. Lyu, H.P. Guo, Effect of molecular weight on the pyrolysis characteristics of alkali lignin, Fuel 193(2017)45-53. [46] L.T. Duong, A.N. Phan, Intensification of hydrodeoxygenation of liquid derived from pyrolysis:Guaiacol as model compound, Chem. Eng. J. 402(2020)125793. [47] C.J. Liu, L.L. Ye, W.H. Yuan, Y. Zhang, J.B. Zou, J.Z. Yang, Y.Z. Wang, F. Qi, Z.Y. Zhou, Investigation on pyrolysis mechanism of guaiacol as lignin model compound at atmospheric pressure, Fuel 232(2018)632-638. [48] S.Y. Zhong, B. Zhang, C.H. Liu, A. Shujaa Aldeen, S. Mwenya, H.Y. Zhang, A minireview on catalytic fast co-pyrolysis of lignocellulosic biomass for bio-oil upgrading via enhancing monocyclic aromatics, J. Anal. Appl. Pyrol. 164(2022)105544. [49] M. Huang, L. Zhu, W.B. Zhang, L.J. Zhu, Z.Q. Ma, D.Y. Chen, Insight into the synergistic reaction mechanism of biomass pseudo components and lowdensity polyethylene for the production of light aromatics through co-catalytic fast pyrolysis over hierarchical HZSM-5, Fuel 324(2022)124699. [50] S. Ghysels, B. Dubuisson, M. Pala, L. Rohrbach, J. Van den Bulcke, H.J. Heeres, F. Ronsse, Improving fast pyrolysis of lignin using three additives with different modes of action, Green Chem. 22(19)(2020)6471-6488. [51] T. Ročnik, B. Likozar, E. Jasiukaityte·-Grojzdek, M. Grilc, Catalytic lignin valorisation by depolymerisation, hydrogenation, demethylation and hydrodeoxygenation:Mechanism, chemical reaction kinetics and transport phenomena, Chem. Eng. J. 448(2022)137309. [52] X.N. Lin, L.S. Kong, X.J. Ren, D.H. Zhang, H.Z. Cai, H.W. Lei, Catalytic co-pyrolysis of torrefied poplar wood and high-density polyethylene over hierarchical HZSM-5 for mono-aromatics production, Renew. Energy 164(2021)87-95. [53] W.K. Yao, J.A. Li, Y. Feng, W. Wang, X.L. Zhang, Q. Chen, S. Komarneni, Y.J. Wang, Thermally stable phosphorus and nickel modified ZSM-5 zeolites for catalytic co-pyrolysis of biomass and plastics, RSC Adv. 5(39)(2015)30485-30494. |