[1] Y. Jiang, J.L. Fan, T.Y. Chai, F.L. Lewis, Dual-rate operational optimal control for flotation industrial process with unknown operational model, IEEE Trans. Ind. Electron. 66(6)(2019)4587-4599. [2] K.X. Bi, S.Y. Zhang, C. Zhang, H.R. Li, X.Y. Huang, H.Y. Liu, T. Qiu, Knowledge expression, numerical modeling and optimization application of ethylene thermal cracking:From the perspective of intelligent manufacturing, Chin. J. Chem. Eng. 38(2021)1-17. [3] M.B. Sabeti, M.A. Hejazi, A. Karimi, Enhanced removal of nitrate and phosphate from wastewater by Chlorella vulgaris:Multi-objective optimization and CFD simulation, Chin. J. Chem. Eng. 27(3)(2019)639-648. [4] H. Yan, F.L. Wang, D.K. He, Q.K. Wang, An operational adjustment framework for a complex industrial process based on hybrid Bayesian network, IEEE Trans. Autom. Sci. Eng. 17(4)(2020)1699-1710. [5] F.Z. Liu, H.J. Gao, J.B. Qiu, S. Yin, J.L. Fan, T.Y. Chai, Networked multirate output feedback control for setpoints compensation and its application to rougher flotation process, IEEE Trans. Ind. Electron. 61(1)(2014)460-468. [6] T.Y. Chai, L. Zhao, J.B. Qiu, F.Z. Liu, J.L. Fan, Integrated network-based model predictive control for setpoints compensation in industrial processes, IEEE Trans. Ind. Inform. 9(1)(2013)417-426. [7] J. Zhang, Z.H. Tang, Y.F. Xie, M.X. Ai, G.Y. Zhang, W.H. Gui, Data-driven adaptive modeling method for industrial processes and its application in flotation reagent control, ISA Trans. 108(2021)305-316. [8] W. Dai, T.Y. Chai, S.X. Yang, Data-driven optimization control for safety operation of hematite grinding process, IEEE Trans. Ind. Electron. 62(5)(2015)2930-2941. [9] M. Ellis, P.D. Christofides, Integrating dynamic economic optimization and model predictive control for optimal operation of nonlinear process systems, Contr. Eng. Pract. 22(2014)242-251. [10] C.X. Mu, D. Wang, H.B. He, Novel iterative neural dynamic programming for data-based approximate optimal control design, Automatica 81(2017)240-252. [11] B.Y. Li, H.P. Du, W.H. Li, B.J. Zhang, Integrated dynamics control and energy efficiency optimization for overactuated electric vehicles, Asian J. Contr. 20(5)(2018)1952-1966. [12] C.E. Rasmussen, C.K.I. Williams, Gaussian processes for machine learning. Cambridge, Mass.:MIT Press, 2006. [13] T. Krivec, G. Papa, J. Kocijan, Simulation of variational Gaussian process NARX models with GPGPU, ISA Trans. 109(2021)141-151. [14] H.J. Huang, Y.D. Song, X. Peng, S.X. Ding, W.M. Zhong, W. Du, A sparse nonstationary trigonometric Gaussian process regression and its application on nitrogen oxide prediction of the diesel engine, IEEE Trans. Ind. Inform. 17(12)(2021)8367-8377. [15] L. Yang, K. Wang, L. Mihaylova, Online sparse multi-output Gaussian process regression and learning, IEEE Trans. Signal Inf. Process. Netw. 5(2)(2019)258-272. [16] D. Yang, X. Zhang, R. Pan, Y.J. Wang, Z.H. Chen, A novel Gaussian process regression model for state-of-health estimation of lithium-ion battery using charging curve, J. Power Sources 384(2018)387-395. [17] K.L. Liu, Y. Li, X.S. Hu, M. Lucu, W.D. Widanage, Gaussian process regression with automatic relevance determination kernel for calendar aging prediction of lithium-ion batteries, IEEE Trans. Ind. Inform. 16(6)(2019)3767-3777. [18] X. Zhao, Y. Fu, Y.C. Liu, Human motion tracking by temporal-spatial local Gaussian process experts, IEEE Trans. Image Process. 20(4)(2011)1141-1151. [19] A. Ranganathan, M.H. Yang, J. Ho, Online sparse Gaussian process regression and its applications, IEEE Trans. Image Process. 20(2)(2011)391-404. [20] A. Gijsberts, G. Metta, Real-time model learning using Incremental Sparse Spectrum Gaussian Process Regression, Neural Netw. 41(2013)59-69. [21] X.L. Wu, Q. Yuan, L. Wang, Multiobjective differential evolution algorithm for solving robotic cell scheduling problem with batch-processing machines, IEEE Trans. Autom. Sci. Eng. 18(2)(2021)757-775. [22] L.M. Zheng, S.X. Zhang, S.Y. Zheng, Y.M. Pan, Differential evolution algorithm with two-step subpopulation strategy and its application in microwave circuit designs, IEEE Trans. Ind. Inform. 12(3)(2016)911-923. [23] Y. Wang, H. Liu, H. Long, Z.J. Zhang, S.X. Yang, Differential evolution with a new encoding mechanism for optimizing wind farm layout, IEEE Trans. Ind. Inform. 14(3)(2017)1040-1054. [24] S.M. Guo, C.C. Yang, Enhancing differential evolution utilizing eigenvector-based crossover operator, IEEE Trans. Evol. Comput. 19(1)(2015)31-49. [25] N.M. Hamza, D.L. Essam, R.A. Sarker, Constraint consensus mutation-based differential evolution for constrained optimization, IEEE Trans. Evol. Comput. 20(3)(2016)447-459. [26] H. Zhao, Z.H. Zhan, Y. Lin, X.F. Chen, X.N. Luo, J. Zhang, S. Kwong, J. Zhang, Local binary pattern-based adaptive differential evolution for multimodal optimization problems, IEEE Trans. Cybern. 50(7)(2019)3343-3357. [27] Y. Yang, S.C. Tan, S.Y.R. Hui, Front-end parameter monitoring method based on two-layer adaptive differential evolution for SS-compensated wireless power transfer systems, IEEE Trans. Ind. Inform. 15(11)(2019)6101-6113. [28] X.F. Liu, Z.H. Zhan, Y. Lin, W.N. Chen, Y.J. Gong, T.L. Gu, H.Q. Yuan, J. Zhang, Historical and heuristic-based adaptive differential evolution, IEEE Trans. Syst. Man Cybern. 49(12)(2018)2623-2635. [29] Z.H. Zhan, Z.J. Wang, H. Jin, J. Zhang, Adaptive distributed differential evolution, IEEE Trans. Cybern. 50(11)(2019)4633-4647. [30] Z.J. Wang, Z.H. Zhan, Y. Lin, W.J. Yu, H. Wang, S. Kwong, J. Zhang, Automatic niching differential evolution with contour prediction approach for multimodal optimization problems, IEEE Trans. Evol. Comput. 24(1)(2019)114-128. [31] Q.Q. Fan, X.F. Yan, Self-adaptive differential evolution algorithm with zoning evolution of control parameters and adaptive mutation strategies, IEEE Trans. Cybern. 46(1)(2016)219-232. [32] Q.Q. Fan, Y.L. Zhang, Self-adaptive differential evolution algorithm with crossover strategies adaptation and its application in parameter estimation, Chemom. Intell. Lab. Syst. 151(2016)164-171. |