[1] I. Ahmed, S.H. Jhung, Adsorptive desulfurization and denitrogenation using metal-organic frameworks, J. Hazard. Mater. 301(2016)259-276. [2] J. Liu, M.S. Tomassone, X.Y. Kuang, S.H. Zhou, Operation parameters and design optimization based on CFD simulations on a novel spray dispersion desulfurization tower, Fuel Process. Technol. 209(2020)106514. [3] R. Chen, T.S. Zhang, Y.Q. Guo, J.W. Wang, J.X. Wei, Q.J. Yu, Recent advances in simultaneous removal of SO2 and NOx from exhaust gases:Removal process, mechanism and kinetics, Chem. Eng. J. 420(2021)127588. [4] B. Guo, A.L. Ren, J. Gao N, Z. Fang, T.Y. Zhu, Sintered flue gas semidry processing desulphurization ash as cementing materials, in:20093rd International Conference on Bioinformatics and Biomedical Engineering, IEEE, Beijing, China, 2009. [5] T.S. Zhang, C. Wu, B. Li, J.W. Wang, R. Ravat, X.Z. Chen, J.X. Wei, Q.J. Yu, Linking the SO2 emission of cement plants to the sulfur characteristics of their limestones:A study of 80 NSP cement lines in China, J. Clean. Prod. 220(2019)200-211. [6] I.I. Oecd, Energy and Air Pollution:World Energy Outlook Special Report 2016, 2016. [7] X.L. Han, X.X. Chen, Resource-based method for realizing zero emission of sulfur dioxide from flue gas, in:Proceedings of the 3rd 2017 International Conference on Sustainable Development (ICSD 2017), Atlantis Press, Paris, France, 2017. [8] Z.G. Shen, X. Chen, M. Tong, S.P. Guo, M.J. Ni, J. Lu, Studies on magnesiumbased wet flue gas desulfurization process with oxidation inhibition of the byproduct, Fuel 105(2013)578-584. [9] Z.X. Zhu, Y.P. Ma, Z. Qu, L. Fang, W.Y. Zhang, N.Q. Yan, Study on a new wet flue gas desulfurization method based on the Bunsen reaction of sulfur-iodine thermochemical cycle, Fuel 195(2017)33-37. [10] L. Koech, H. Rutto, L. Lerotholi, R.C. Everson, H. Neomagus, D. Branken, A. Moganelwa, Spray drying absorption for desulphurization:A review of recent developments, Clean Technol. Environ. Policy 23(6)(2021)1665-1686. [11] A.L. Villanueva Perales, F.J. Gutierrez Ortiz, P. Ollero, F. Mu noz Gil, Controlla-~bility analysis and decentralized control of a wet limestone flue gas desulfurization plant, Ind. Eng. Chem. Res. 47(24)(2008)9931-9940. [12] Z.K. Yang, C.Y. Liu, X.L. Song, Z.Y. Song, Z.S. Wang, Application of RBF neural network PID in wet flue gas desulfurization of thermal power plant, in:2016 International Conference on Machine Learning and Cybernetics (ICMLC), 2016, IEEE, Jeju, Korea (South), 2017. [13] A.L. Villanueva Perales, P. Ollero, F.J. Gutierrez Ortiz, A. G omez-Barea, Model predictive control of a wet limestone flue gas desulfurization pilot plant, Ind. Eng. Chem. Res. 48(11)(2009)5399-5405. [14] Y.T. Shi, D.H. Sun, Z.J. Li, N.S. Chen, W. Qing, D.J. Gao, Hybrid modeling and control of nonlinear wet flue gas desulphurization process, in:2007 International Conference on Machine Learning and Cybernetics, IEEE, Hong Kong, China, 2007. [15] M. Kuure-Kinsey, B.W. Bequette, Multiple model predictive control strategy for disturbance rejection, Ind. Eng. Chem. Res. 49(17)(2010)7983-7989. [16] A.L. Villanueva Perales, F.J. Gutierrez Ortiz, F. Vidal Barrero, P. Ollero, Using neural networks to address nonlinear pH control in wet limestone flue gas desulfurization plants, Ind. Eng. Chem. Res. 49(5)(2010)2263-2272. [17] B.Y. Zhu, B. Li, Z. Wang, R.F. Song, S.L. Qiu, Automatic adjustment and optimization of desulphurization slurry supply for 335 MW unit, in:2019 IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), 2019, IEEE, Chongqing, China, 2020. [18] X.L. Li, Q.B. Liu, K. Wang, F.Q. Wang, G.M. Cui, Y. Li, Intelligent partition of operating condition-based multi-model control in flue gas desulfurization, IEEE Access 8(2020)149301-149315. [19] S. Kambale, S. George, P.R.G. Zope, Controllers used in pH neutralization process:A review, IRJET 2(3)(2015)354-361. [20] J.Q. Han, From PID to active disturbance rejection control, IEEE Trans. Ind. Electron. 56(3)(2009)900-906. [21] C. Johnson, Further study of the linear regulator with disturbances:The case of vector disturbances satisfying a linear differential equation, IEEE Trans. Autom. Contr. 15(2)(1970)222-228. [22] P.O. Larsson, F. Casella, F. Magnusson, J. Andersson, M. Diehl, J. Åkesson, A framework for nonlinear model-predictive control using object-oriented modeling with a case study in power plant start-up, in:2013 IEEE Conference on Computer Aided Control System Design (CACSD), 2013, Hyderabad, India, IEEE, 2013. [23] C. Shang, F.Q. You, A data-driven robust optimization approach to scenariobased stochastic model predictive control, J. Process. Contr. 75(2019)24-39. [24] X.S. Chen, J. Yang, S.H. Li, Q. Li, Disturbance observer based multi-variable control of ball mill grinding circuits, J. Process. Contr. 19(7)(2009)1205-1213. [25] J.H. She, X. Xin, Y.D. Pan, Equivalent-input-disturbance approachdAnalysis and application to disturbance rejection in dual-stage feed drive control system, IEEE ASME Trans. Mechatron. 16(2)(2011)330-340. [26] S.E. Talole, J.P. Kolhe, S.B. Phadke, Extended-state-observer-based control of flexible-joint system with experimental validation, IEEE Trans. Ind. Electron. 57(4)(2010)1411-1419. [27] H.W. Zhou, J.H. Xu, C. Chen, X.G. Tian, G.H. Liu, Disturbance-observer-based direct torque control of five-phase permanent magnet motor under open-circuit and short-circuit faults, IEEE Trans. Ind. Electron. 68(12)(2021)11907-11917. [28] K.R. Sun, X.L. Wang, R.W. Guo, Stabilization of nonlinear systems with external disturbances using the DE-based control method, Symmetry 15(5)(2023)987. [29] Q.C. Zhong, D. Rees, Control of uncertain LTI systems based on an uncertainty and disturbance estimator, J. Dyn. Syst. Meas. Contr. 126(4)(2004)905-910. [30] L. Sun, D.H. Li, Q.C. Zhong, K.Y. Lee, Control of a class of industrial processes with time delay based on a modified uncertainty and disturbance estimator, IEEE Trans. Ind. Electron. 63(11)(2016)7018-7028. [31] J.P. Kolhe, M. Shaheed, T.S. Chandar, S.E. Talole, Robust control of robot manipulators based on uncertainty and disturbance estimation, Int. J. Robust Nonlinear Contr. 23(1)(2013)104-122. [32] S. Oucheriah, Robust control of the DCeDC boost converter based on the uncertainty and disturbance estimator, Int. J. Electron. 104(11)(2017)1810-1822. [33] R. Sanz, P. Garcia, Q.C. Zhong, P. Albertos, Robust control of quadrotors based on an uncertainty and disturbance estimator, J. Dyn. Syst. Meas. Contr. 138(7)(2016)071006. [34] L.F. Xiao, Aeroengine multivariable nonlinear tracking control based on uncertainty and disturbance estimator, J. Eng. Gas Turbines Power 136(12)(2014)121601. [35] P. Selvaraj, O.M. Kwon, S.H. Lee, R. Sakthivel, Uncertainty and disturbance rejections of complex dynamical networks via truncated predictive control, J. Frankl. Inst. 357(8)(2020)4901-4921. [36] Y. Zhong, X. Gao, W. Huo, Z.Y. Luo, M.J. Ni, K.F. Cen, A model for performance optimization of wet flue gas desulfurization systems of power plants, Fuel Process. Technol. 89(11)(2008)1025-1032. [37] P. Cordoba, Status of Flue Gas Desulphurisation (FGD) systems from coal-fired power plants:Overview of the physic-chemical control processes of wet limestone FGDs, Fuel 144(2015)274-286. [38] L.E. Kallinikos, E.I. Farsari, D.N. Spartinos, N.G. Papayannakos, Simulation of the operation of an industrial wet flue gas desulfurization system, Fuel Process. Technol. 91(12)(2010)1794-1802. [39] C. Brogren, H.T. Karlsson, Modeling the absorption of SO2 in a spray scrubber using the penetration theory, Chem. Eng. Sci. 52(18)(1997)3085-3099. [40] S. Kiil, M.L. Michelsen, K. Dam-Johansen, Experimental investigation and modeling of a wet flue gas desulfurization pilot plant, Ind. Eng. Chem. Res. 37(7)(1998)2792-2806. [41] M.S. Chiu, Y. Arkun, A new result on Relative Gain Array, Niederlinski Index and decentralized stability condition:22 plant cases, Automatica 27(2)(1991)419-421. [42] N.L. Ricker, Adaptive optimal control:the thinking man's GPC, Automatica 29(3)(1993)798-800. [43] S.S. Keerthi, E.G. Gilbert, Optimal infinite-horizon feedback laws for a general class of constrained discrete-time systems:Stability and moving-horizon approximations, J. Optim. Theory Appl. 57(2)(1988)265-293. [44] H. Michalska, D.Q. Mayne, Robust receding horizon control of constrained nonlinear systems, IEEE Trans. Autom. Contr. 38(11)(1993)1623-1633. [45] D.Q. Mayne, J.B. Rawlings, C.V. Rao, P.O.M. Scokaert, Constrained model predictive control:Stability and optimality, Automatica 36(6)(2000)789-814. [46] Z. Jabbour, S. Moreau, A. Riwan, G. Champenois, Speed estimation comparison between full order state observer&Kalman filter for a haptic interface, in:2009 IEEE International Symposium on Industrial Electronics, IEEE, Seoul, Korea (South), 2009. [47] H. Ji, S. Wang, S.R. Huang, Research of permanent magnet servo system based on disturbance observer and Kalman filter, in:201635th Chinese Control Conference (CCC), IEEE, Chengdu, China, 2016. [48] L. Sun, D.H. Li, K.Y. Lee, Enhanced decentralized PI control for fluidized bed combustor via advanced disturbance observer, Contr. Eng. Pract. 42(2015)128-139. |