[1] P.G. Bruce, B. Scrosati, J.M. Tarascon, Nanomaterials for rechargeable lithium batteries, Angew. Chem. Int. Ed Engl. 47(16) (2008) 2930-2946. [2] J.B. Goodenough, K.S. Park, The Li-ion rechargeable battery: a perspective, J. Am. Chem. Soc. 135(4) (2013) 1167-1176. [3] J. Yang, L.X. Jiang, F.Y. Liu, M. Jia, Y.Q. Lai, Reductive acid leaching of valuable metals from spent lithium-ion batteries using hydrazine sulfate as reductant, Trans. Nonferrous Met. Soc. China 30(8) (2020) 2256-2264. [4] A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries, J. Electrochem. Soc. 144(4) (1997) 1188-1194. [5] Z.R. Song, G.Y. Zhang, X.L. Deng, K.Y. Zou, X.H. Xiao, R. Momen, A. Massoudi, W.T. Deng, J.G. Hu, H.S. Hou, G.Q. Zou, X.B. Ji, Ultra-low-dose pre-metallation strategy served for commercial metal-ion capacitors, Nano-Micro Lett. 14(1) (2022) 53. [6] J. Kumar, R.R. Neiber, J. Park, R. Ali Soomro, G.W. Greene, S. Ali Mazari, H.Y. Seo, J.H. Lee, M. Shon, D.W. Chang, K.Y. Cho, Recent progress in sustainable recycling of LiFePO4-type lithium-ion batteries: strategies for highly selective lithium recovery, Chem. Eng. J. 431(2022) 133993. [7] G.X. Ren, S.W. Xiao, M.Q. Xie, B. Pan, J. Chen, F.G. Wang, X. Xia, Recovery of valuable metals from spent lithium ion batteries by smelting reduction process based on FeO-SiO2-Al2O3 slag system, Trans. Nonferrous Met. Soc. China 27(2) (2017) 450-456. [8] S.Y. Lei, Y. Cao, X.F. Cao, W. Sun, Y.Q. Weng, Y. Yang, Separation of lithium and transition metals from leachate of spent lithium-ion batteries by solvent extraction method with Versatic 10, Sep. Purif. Technol. 250(2020) 117258. [9] J.P. Chen, Q.W. Li, J.S. Song, D.W. Song, L.Q. Zhang, X.X. Shi, Environmentally friendly recycling and effective repairing of cathode powders from spent LiFePO4 batteries, Green Chem. 18(8) (2016) 2500-2506. [10] Y.F. Huang, G.H. Han, J.T. Liu, W.C. Chai, W.J. Wang, S.Z. Yang, S.P. Su, A stepwise recovery of metals from hybrid cathodes of spent Li-ion batteries with leaching-flotation-precipitation process, J. Power Sources 325(2016) 555-564. [11] D.C. Bian, Y.H. Sun, S. Li, Y. Tian, Z.H. Yang, X.M. Fan, W.X. Zhang, A novel process to recycle spent LiFePO4 for synthesizing LiFePO4/C hierarchical microflowers, Electrochim. Acta 190(2016) 134-140. [12] Y.L. Yao, M.Y. Zhu, Z. Zhao, B.H. Tong, Y.Q. Fan, Z.S. Hua, Hydrometallurgical processes for recycling spent lithium-ion batteries: a critical review, ACS Sustainable Chem. Eng. 6(11) (2018) 13611-13627. [13] H. Li, S.Z. Xing, Y. Liu, F.J. Li, H. Guo, G. Kuang, Recovery of lithium, iron, and phosphorus from spent LiFePO4 batteries using stoichiometric sulfuric acid leaching system, ACS Sustainable Chem. Eng. 5(9) (2017) 8017-8024. [14] J.L. Zhang, J.T. Hu, Y.B. Liu, Q.K. Jing, C. Yang, Y.Q. Chen, C.Y. Wang, Sustainable and facile method for the selective recovery of lithium from cathode scrap of spent LiFePO4 batteries, ACS Sustainable Chem. Eng. 7(6) (2019) 5626-5631. [15] H.Y. Li, H. Ye, M.C. Sun, W.J. Chen, Process for recycle of spent lithium iron phosphate battery via a selective leaching-precipitation method, J. Cent. South Univ. 27(11) (2020) 3239-3248. [16] P.W. Liu, Z.T. Fei, Y.J. Zhang, P. Dong, Q. Meng, X. Yang, Efficient oxidation approach for selective recovery of lithium from cathode materials of spent LiFePO4 batteries, JOM 74(5) (2022) 1934-1944. [17] Y.F. Song, B.Y. Xie, S.L. Song, S.Y. Lei, W. Sun, R. Xu, Y. Yang, Regeneration of LiFePO4 from spent lithium-ion batteries via a facile process featuring acid leaching and hydrothermal synthesis, Green Chem. 23(11) (2021) 3963-3971. [18] G.R. Hu, Y.F. Gong, Z.D. Peng, K. Du, M. Huang, J.H. Wu, D.C. Guan, J.Y. Zeng, B.C. Zhang, Y.B. Cao, Direct recycling strategy for spent lithium iron phosphate powder: an efficient and wastewater-free process, ACS Sustainable Chem. Eng. 10(35) (2022) 11606-11616. [19] H. Jin, J.L. Zhang, D.D. Wang, Q.K. Jing, Y.Q. Chen, C.Y. Wang, Facile and efficient recovery of lithium from spent LiFePO4 batteries via air oxidation-water leaching at room temperature, Green Chem. 24(1) (2022) 152-162. [20] Y.J. Li, I. Perederiy, V.G. Papangelakis, Cleaning of waste smelter slags and recovery of valuable metals by pressure oxidative leaching, J. Hazard Mater. 152(2) (2008) 607-615. [21] R.G. McDonald, D.M. Muir, Pressure oxidation leaching of chalcopyrite. Part I. Comparison of high and low temperature reaction kinetics and products, Hydrometallurgy 86(3-4) (2007) 191-205. [22] W.F. Liu, X.L. Hu, R. Jia, D.C. Zhang, L. Chen, T.Z. Yang, Comparation on the methods of removing impurity metals from copper powder of waste printed circuit boards, J. Clean. Prod. 349(2022) 131295. [23] D.Y. Wu, D.X. Wang, Z.Q. Liu, S. Rao, K.F. Zhang, Selective recovery of lithium from spent lithium iron phosphate batteries using oxidation pressure sulfuric acid leaching system, Trans. Nonferrous Met. Soc. China 32(6) (2022) 2071-2079. [24] J. Kumar, X. Shen, B. Li, H.Z. Liu, J.M. Zhao, Selective recovery of Li and FePO4 from spent LiFePO4 cathode scraps by organic acids and the properties of the regenerated LiFePO4, Waste Manag. 113(2020) 32-40. [25] Z. Li, L.H. He, Y.F. Zhu, C. Yang, A green and cost-effective method for production of LiOH from spent LiFePO4, ACS Sustainable Chem. Eng. 8(42) (2020) 15915-15926. [26] W.G. Lv, Z.H. Wang, X.H. Zheng, H.B. Cao, M.M. He, Y. Zhang, H.J. Yu, Z. Sun, Selective recovery of lithium from spent lithium-ion batteries by coupling advanced oxidation processes and chemical leaching processes, ACS Sustainable Chem. Eng. 8(13) (2020) 5165-5174. [27] H.J. Shentu, B. Xiang, Y.J. Cheng, T. Dong, J. Gao, Y.G. Xia, A fast and efficient method for selective extraction of lithium from spent lithium iron phosphate battery, Environ. Technol. Innov. 23(2021) 101569. [28] R. Dedryvere, M. Maccario, L. Croguennec, F. Le Cras, C. Delmas, D. Gonbeau, X-ray photoelectron spectroscopy investigations of carbon-coated LixFePO4 materials, Chem. Mater. 20(22) (2008) 7164-7170. [29] C.V. Ramana, A. Mauger, F. Gendron, C.M. Julien, K. Zaghib, Study of the Li-insertion/extraction process in LiFePO4/FePO4, J. Power Sources 187(2) (2009) 555-564. [30] L. Castro, R. Dedryvere, M. El Khalifi, P.E. Lippens, J. Breger, C. Tessier, D. Gonbeau, The spin-polarized electronic structure of LiFePO4 and FePO4 evidenced by in-lab XPS, J. Phys. Chem. C 114(41) (2010) 17995-18000. [31] P. Meshram, B.D. Pandey, T.R. Mankhand, Hydrometallurgical processing of spent lithium ion batteries (LIBs) in the presence of a reducing agent with emphasis on kinetics of leaching, Chem. Eng. J. 281(2015) 418-427. [32] E.Y. Kim, M.S. Kim, J.C. Lee, J. Jeong, B.D. Pandey, Leaching kinetics of copper from waste printed circuit boards by electro-generated chlorine in HCl solution, Hydrometallurgy 107(3-4) (2011) 124-132. [33] X.X. Zhang, L. Li, E.S. Fan, Q. Xue, Y.F. Bian, F. Wu, R.J. Chen, Toward sustainable and systematic recycling of spent rechargeable batteries, Chem. Soc. Rev. 47(19) (2018) 7239-7302. [34] L. Usai, C.R. Hung, F. Vasquez, M. Windsheimer, O.S. Burheim, A.H. Stroemman, Life cycle assessment of fuel cell systems for light duty vehicles, current state-of-the-art and future impacts, J. Clean. Prod. 280(2021) 125086. |