[1] Z.Q. Ge, Review on data-driven modeling and monitoring for plant-wide industrial processes, Chemom. Intell. Lab. Syst. 171 (2017) 16-25. [2] S. Yin, S.X. Ding, A. Haghani, H.Y. Hao, P. Zhang, A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process, J. Process. Contr. 22 (9) (2012) 1567-1581. [3] B. Song, H.B. Shi, Fault detection and classification using quality-supervised double-layer method, IEEE Trans. Ind. Electron. 65 (10) (2018) 8163-8172. [4] Y.T. Lyu, L. Zhou, Y. Cong, H.B. Zheng, Z.H. Song, Multirate mixture probability principal component analysis for process monitoring in multimode processes, IEEE Trans. Autom. Sci. Eng. PP (99) (2023) 1-12. [5] M. Nawaz, A.S. Maulud, H. Zabiri, S. Ali Ammar Taqvi, A. Idris, Improved process monitoring using the CUSUM and EWMA-based multiscale PCA fault detection framework, Chin. J. Chem. Eng. 29 (2021) 253-265. [6] K.X. Peng, K. Zhang, B. You, J. Dong, Z.D. Wang, A quality-based nonlinear fault diagnosis framework focusing on industrial multimode batch processes, IEEE Trans. Ind. Electron. 63 (4) (2016) 2615-2624. [7] Q.C. Jiang, X.F. Yan, Parallel PCA-KPCA for nonlinear process monitoring, Contr. Eng. Pract. 80 (2018) 17-25. [8] Z.Y. Wang, L.G. Yao, G. Chen, J.X. Ding, Modified multiscale weighted permutation entropy and optimized support vector machine method for rolling bearing fault diagnosis with complex signals, ISA Trans. 114 (2021) 470-484. [9] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (7553) (2015) 436-444. [10] K.D. Lu, L. Zhou, Z.G. Wu, Representation-learning-based CNN for intelligent attack localization and recovery of cyber-physical power systems, IEEE Trans. Neural Netw. Learn. Syst. PP (99) (2023) 1-11. [11] Y.L. Wang, Z.F. Pan, X.F. Yuan, C.H. Yang, W.H. Gui, A novel deep learning based fault diagnosis approach for chemical process with extended deep belief network, ISA Trans. 96 (2020) 457-467. [12] C. Shang, F. Yang, D.X. Huang, W.X. Lyu, Data-driven soft sensor development based on deep learning technique, J. Process. Contr. 24 (3) (2014) 223-233. [13] Y. Maki, K.A. Loparo, A neural-network approach to fault detection and diagnosis in industrial processes, IEEE Trans. Contr. Syst. Technol. 5 (6) (1997) 529-541. [14] X.F. Yuan, C. Ou, Y.L. Wang, C.H. Yang, W.H. Gui, A layer-wise data augmentation strategy for deep learning networks and its soft sensor application in an industrial hydrocracking process, IEEE Trans. Neural Netw. Learn. Syst. 32 (8) (2021) 3296-3305. [15] X.F. Yuan, S.B. Qi, Y.L. Wang, Stacked enhanced auto-encoder for data-driven soft sensing of quality variable, IEEE Trans. Instrum. Meas. 69 (10) (2020) 7953-7961. [16] H. Shahnazari, P. Mhaskar, J.M. House, T.I. Salsbury, Modeling and fault diagnosis design for HVAC systems using recurrent neural networks, Comput. Chem. Eng. 126 (2019) 189-203. [17] Z.H. An, S.M. Li, J.R. Wang, X.X. Jiang, A novel bearing intelligent fault diagnosis framework under time-varying working conditions using recurrent neural network, ISA Trans. 100 (2020) 155-170. [18] G.S. Chadha, A. Panambilly, A. Schwung, S.X. Ding, Bidirectional deep recurrent neural networks for process fault classification, ISA Trans. 106 (2020) 330-342. [19] Y.X. Liu, R. Young, B. Jafarpour, Long-short-term memory encoder-decoder with regularized hidden dynamics for fault detection in industrial processes, J. Process. Contr. 124 (2023) 166-178. [20] S. Xiong, L. Zhou, Y. Dai, X. Ji, Attention-based LSTM fully convolutional network for chemical process fault diagnosis, Chin. J. Chem. Eng. (2022). [21] H. Liu, J. Zhou, Y. Zheng, W. Jiang, Y. Zhang, Fault diagnosis of rolling bearings with recurrent neural network-based autoencoders, ISA Trans. 77 (2018) 167-178. [22] J.X. Zhang, M. Zhang, Z.M. Feng, R.F. Lv, C.Y. Lu, Y.Y. Dai, L.C. Dong, Gated recurrent unit-enhanced deep convolutional neural network for real-time industrial process fault diagnosis, Process. Saf. Environ. Prot. 175 (2023) 129-149. [23] Y.M. Han, N. Ding, Z.Q. Geng, Z. Wang, C. Chu, An optimized long short-term memory network based fault diagnosis model for chemical processes, J. Process. Contr. 92 (2020) 161-168. [24] D. Bahdanau, K. Cho, Y. Bengio, Neural machine translation by jointly learning to align and translate, (2014): arXiv: 1409.0473. [25] Y. Kim, C. Denton, L. Hoang, A.M. Rush, Structured attention networks, (2017): arXiv: 1702.00887. [26] J.C. Zhuang, J.H. Yan, C.G. Huang, M.P. Jia, Residual attention temporal recurrent network for fault diagnosis of gearboxes under limited labeled data, Eng. Appl. Artif. Intell. 129 (2024) 107539. [27] X.T. Bi, J.S. Zhao, A novel orthogonal self-attentive variational autoencoder method for interpretable chemical process fault detection and identification, Process. Saf. Environ. Prot. 156 (2021) 581-597. [28] Y.L. Wang, H.B. Yang, X.F. Yuan, Y.A.W. Shardt, C.H. Yang, W.H. Gui, Deep learning for fault-relevant feature extraction and fault classification with stacked supervised auto-encoder, J. Process. Contr. 92 (2020) 79-89. [29] W.F. Ku, R.H. Storer, C. Georgakis, Disturbance detection and isolation by dynamic principal component analysis, Chemom. Intell. Lab. Syst. 30 (1) (1995) 179-196. [30] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L. Kaiser, I. Polosukhin, Attention is all you need, (2017): arXiv: 1706.03762. [31] Z.P. Zhang, J.S. Zhao, A deep belief network based fault diagnosis model for complex chemical processes, Comput. Chem. Eng. 107 (2017) 395-407. [32] J.J. Downs, E.F. Vogel, A plant-wide industrial process control problem, Comput. Chem. Eng. 17 (3) (1993) 245-255. [33] I. Lomov, M. Lyubimov, I. Makarov, L.E. Zhukov, Fault detection in Tennessee Eastman process with temporal deep learning models, J. Ind. Inf. Integr. 23 (2021) 100216. [34] S.S. Ge, C.C. Hang, T. Zhang, Nonlinear adaptive control using neural networks and its application to CSTR systems, J. Process. Contr. 9 (4) (1999) 313-323. [35] S. Yoon, J.F. MacGregor, Fault diagnosis with multivariate statistical models part I: Using steady state fault signatures, J. Process. Contr. 11 (4) (2001) 387-400. [36] C.F. Alcala, S.J. Qin, Reconstruction-based contribution for process monitoring with kernel principal component analysis, Proceedings of the 2010 American Control Conference. IEEE, Baltimore, MD, USA. 2010. |