[1] S. Chen, R. Wojcieszak, F. Dumeignil, E. Marceau, S. Royer, How catalysts and experimental conditions determine the selective hydroconversion of furfural and 5-hydroxymethylfurfural, Chem. Rev. 118 (22) (2018) 11023-11117. [2] Hou Q, Qi X, Zhen M, Qian H, Nie Y, Bai C, Zhang S, Bai X, Ju M. Biorefinery roadmap based on catalytic production and upgrading 5-hydroxymethylfurfural. Green Chemistry 23 (1)(2021)119-231. [3] Y.J. Zhang, J. Zhang, D.S. Su, 5-Hydroxymethylfurfural: Akey intermediate for efficient biomass conversion, J. Energy Chem. 24 (5) (2015) 548-551. [4] C.W. Jiang, J.D. Zhu, B. Wang, L. Li, H. Zhong, One-pot synthesis of 5-hydroxymethylfurfural from glucose over zirconium doped mesoporous KIT-6, Chin. J. Chem. Eng. 26 (6) (2018) 1270-1277. [5] H. Li, Y. Zhong, L.X. Wang, Q. Deng, J. Wang, Z.L. Zeng, X.X. Cao, S.G. Deng, Functionalized metal-organic frameworks with strong acidity and hydrophobicity as an efficient catalyst for the production of 5-hydroxymethylfurfural, Chin. J. Chem. Eng. 33 (2021) 167-174. [6] Y.N. Wei, Y.L. Zhang, B. Li, W. Guan, C.H. Yan, X. Li, Y.S. Yan, Facile synthesis of metal-organic frameworks embedded in interconnected macroporous polymer as a dual acid-base bifunctional catalyst for efficient conversion of cellulose to 5-hydroxymethylfurfural, Chin. J. Chem. Eng. 44 (2022) 169-181. [7] Y. Zhong, C.Y. Huang, L.J. Li, Q. Deng, J. Wang, Z.L. Zeng, S.G. Deng, Postsynthetic acid modification of amino-tagged metal-organic frameworks: Structure-functionrelationship for catalytic 5-hydroxymethylfurfural synthesis, Chin. J. Chem. Eng. 49 (2022) 245-252. [8] M.J. Gilkey, B.J. Xu, Heterogeneous catalytic transfer hydrogenation as an effective pathway in biomass upgrading, ACS Catal. 6 (3) (2016) 1420-1436. [9] L. Hu, L. Lin, Z. Wu, S.Y. Zhou, S.J. Liu, Recent advances in catalytic transformation of biomass-derived 5-hydroxymethylfurfural into the innovative fuels and chemicals, Renew. Sustain. Energy Rev. 74 (2017) 230-257. [10] L. Hu, J.X. Xu, S.Y. Zhou, A.Y. He, X. Tang, L. Lin, J.M. Xu, Y.J. Zhao, Catalytic advances in the production and application of biomass-derived 2, 5-dihydroxymethylfuran, ACS Catal. 8 (4) (2018) 2959-2980. [11] X. Tang, J.N. Wei, N. Ding, Y. Sun, X.H. Zeng, L. Hu, S.J. Liu, T.Z. Lei, L. Lin, Chemoselective hydrogenation of biomass derived 5-hydroxymethylfurfural to diols: Key intermediates for sustainable chemicals, materials and fuels, Renew. Sustain. Energy Rev. 77 (2017) 287-296. [12] Chatterjee M, Ishizaka T, Kawanami H. Selective hydrogenation of 5-hydroxymethylfurfural to 2,5-bis-(hydroxymethyl)furan using Pt/MCM-41 in an aqueous medium: a simple approach. Green Chem. 16 (11) (2014) 4734-4739. [13] Vikanova KV, Chernova MS, Redina EA, Kapustin GI, Tkachenko OP, Kustov LM. Heterogeneous additive-free highly selective synthesis of 2,5-bis(hydroxymethyl)furan over catalysts with ultra-low Pt content. J. Chem. Technol. Biotechnol. 96 (9) (2021) 2421-2425. [14] J. Wang, J.R. Zhao, J.H. Fu, C.L. Miao, S.Y. Jia, P.F. Yan, J.H. Huang, Highly selective hydrogenation of 5-hydroxymethylfurfural to 2, 5-bis(hydroxymethyl)furan over metal-oxide supported Pt catalysts: The role of basic sites, Appl. Catal. A Gen. 643 (2022) 118762. [15] Q. Zhu, Y. Zhuang, H.Q. Zhao, P. Zhan, C. Ren, C.S. Su, W.Q. Ren, J.W. Zhang, D. Cai, P.Y. Qin, 2, 5-Diformylfuran production by photocatalytic selective oxidation of 5-hydroxymethylfurfural in water using MoS2/CdIn2S4 flower-like heterojunctions, Chin. J. Chem. Eng. 54 (2023) 180-191. [16] A. Marotta, V. Ambrogi, P. Cerruti, A. Mija, Green approaches in the synthesis of furan-based diepoxy monomers, RSC Adv. 8 (29) (2018) 16330-16335. [17] N. Yoshie, S. Yoshida, K. Matsuoka, Self-healing of biobased furan polymers: Recovery of high mechanical strength by mild heating, Polym. Degrad. Stab. 161 (2019) 13-18. [18] F. Chacon-Huete, C. Messina, F. Chen, L. Cuccia, X. Ottenwaelder, P. Forgione, Solvent-free mechanochemical oxidation and reduction of biomass-derived 5-hydroxymethyl furfural, Green Chem. 20 (23) (2018) 5261-5265. [19] G. Gao, Z.C. Jiang, C.W. Hu, Selective hydrogenation of the carbonyls in furfural and 5-hydroxymethylfurfural catalyzed by PtNi alloy supported on SBA-15 in aqueous solution under mild conditions, Front. Chem. 9 (2021) 759512. [20] M. Chatterjee, T. Ishizaka, H. Kawanami, Hydrogenation of 5-hydroxymethylfurfural in supercritical carbon dioxide-water: a tunable approach to dimethylfuran selectivity, Green Chem. 16 (3) (2014) 1543. [21] Nakagawa Y, Takada K, Tamura M, Tomishige K. Total Hydrogenation of Furfural and 5-Hydroxymethylfurfural over Supported Pd-Ir Alloy Catalyst. ACS Catal. 4 (8) (2014) 2718-2726. [22] S. Nishimura, N. Ikeda, K. Ebitani, Selective hydrogenation of biomass-derived 5-hydroxymethylfurfural (HMF) to 2, 5-dimethylfuran (DMF) under atmospheric hydrogen pressure over carbon supported PdAu bimetallic catalyst, Catal. Today 232 (2014) 89-98. [23] Pisal DS, Yadav GD. Production of biofuel 2,5-dimethylfuran using highly efficient single-step selective hydrogenation of 5-hydroxymethylfurfural over novel Pd-Co/Al-Zr mixed oxide catalyst. Fuel. 290 (2021) 119947. [24] A.D. Talpade, M.S. Tiwari, G.D. Yadav, Selective hydrogenation of bio-based 5-hydroxymethyl furfural to 2, 5-dimethylfuran over magnetically separable Fe-Pd/C bimetallic nanocatalyst, Mol. Catal. 465 (2019) 1-15. [25] T. Thananatthanachon, T.B. Rauchfuss, Efficient production of the liquid fuel 2, 5-dimethylfuran from fructose using formic acid as a reagent, Angew. Chem. Int. Ed Engl. 49 (37) (2010) 6616-6618. [26] J.Z. Chen, R.L. Liu, Y.Y. Guo, L.M. Chen, H. Gao, Selective hydrogenation of biomass-based 5-hydroxymethylfurfural over catalyst of palladium immobilized on amine-functionalized metal-organic frameworks, ACS Catal. 5 (2) (2015) 722-733. [27] Sarkar C, Koley P, Shown I, Lee J, Liao Y-F, An K, Tardio J, Nakka L, Chen K-H, Mondal J. Integration of Interfacial and Alloy Effects to Modulate Catalytic Performance of Metal-Organic-Framework-Derived Cu-Pd Nanocrystals toward Hydrogenolysis of 5-Hydroxymethylfurfural. ACS Sustain Chem Eng. 7 (12) (2019) 10349-10362. [28] F. liu, M. Audemar, K. De Oliveira Vigier, J.M. Clacens, F. De Campo, F. Jerome, Combination of Pd/C and Amberlyst-15 in a single reactor for the acid/hydrogenating catalytic conversion of carbohydrates to 5-hydroxy-2, 5-hexanedione, Green Chem. 16 (9) (2014) 4110-4114. [29] J. Baumgard, M.M. Pohl, U. Kragl, N. Steinfeldt, Preparation of tailor-made supported catalysts using asymmetric flow field flow fractionation and their application in hydrogenation, Nanotechnol. Rev. 3 (1) (2014) 87-98. [30] Luijkx G C. A., Huck N P. M, van Rantwijk F, Maat L, van Bekkum H. Ether Formation in the Hydrogenolysis of Hydroxymethylfurfural over Palladium Catalysts in Alcoholic Solution. Heterocycles. 77 (2009) 1037-1044. [31] S.C. Lee, H.O. Lintang, L. Yuliati, Photocatalytic removal of phenol under visible light irradiation on zinc phthalocyanine/mesoporous carbon nitride nanocomposites, J. Exp. Nanosci. 9 (1) (2014) 78-86. [32] N.V. Long, T. Hayakawa, T. Matsubara, N.D. Chien, M. Ohtaki, M. Nogami, Controlled synthesis and properties of palladium nanoparticles, J. Exp. Nanosci. 7 (4) (2012) 426-439. [33] Y. Mizukoshi, K. Sato, J. Kugai, T.A. Yamamoto, T.J. Konno, N. Masahashi, Catalytic activities of sonochemically prepared Au-core/Pd-shell-structured bimetallic nanoparticles immobilised on TiO2 and its dependence on Pd-shell thickness, J. Exp. Nanosci. 10 (3) (2015) 235-247. [34] O. El-Sharnouby, H.K. Boparai, J. Herrera, D.M. O’Carroll, Aqueous-phase catalytic hydrodechlorination of 1, 2-dichloroethane over palladium nanoparticles (nPd) with residual borohydride from nPd synthesis, Chem. Eng. J. 342 (2018) 281-292. [35] M. Hronec, K. Fulajtarova, I. Vavra, T. Sotak, E. Dobrocka, M. Micusik, Carbon supported Pd-Cu catalysts for highly selective rearrangement of furfural to cyclopentanone, Appl. Catal. B Environ. 181 (2016) 210-219. [36] Kim SC, Shim WG. Properties and performance of Pd based catalysts for catalytic oxidation of volatile organic compounds. Appl Catal B. 92 (2009) 429-436. [37] K.L. Liu, R.X. Qin, L.Y. Zhou, P.X. Liu, Q.H. Zhang, W.T. Jing, P.P. Ruan, L. Gu, G. Fu, N.F. Zheng, Cu 2 O-supported atomically dispersed Pd catalysts for semihydrogenation of terminal alkynes: critical role of oxide supports, CCS Chem. 1 (2) (2019) 207-214. [38] Senftle TP, van Duin ACT, Janik MJ. Role of Site Stability in Methane Activation on PdxCe1-xOδ Surfaces. ACS Catal. 5 (10) (2015) 6187-6199. [39] F. Wang, C.G. Xia, S.P. de Visser, Y. Wang, How does the oxidation state of palladium surfaces affect the reactivity and selectivity of direct synthesis of hydrogen peroxide from hydrogen and oxygen gases? A density functional study, J. Am. Chem. Soc. 141 (2) (2019) 901-910. [40] D. Cao, J.Y. Wang, H.X. Xu, D.J. Cheng, Construction of dual-site atomically dispersed electrocatalysts with Ru-C5 single atoms and Ru-O4 nanoclusters for accelerated alkali hydrogen evolution, Small 17 (31) (2021) e2101163. [41] Z.P. Chen, S. Pronkin, T.P. Fellinger, K. Kailasam, G. Vile, D. Albani, F. Krumeich, R. Leary, J. Barnard, J.M. Thomas, J. Perez-Ramirez, M. Antonietti, D. Dontsova, Merging single-atom-dispersed silver and carbon nitride to a joint electronic system via copolymerization with silver tricyanomethanide, ACS Nano 10 (3) (2016) 3166-3175. [42] Y. Wang, J. Yao, H.R. Li, D.S. Su, M. Antonietti, Highly selective hydrogenation of phenol and derivatives over a Pd@carbon nitride catalyst in aqueous media, J. Am. Chem. Soc. 133 (8) (2011) 2362-2365. [43] F.L. Hu, L.P. Leng, M.Y. Zhang, W.X. Chen, Y.L. Yu, J. Wang, J.H. Horton, Z.J. Li, Direct synthesis of atomically dispersed palladium atoms supported on graphitic carbon nitride for efficient selective hydrogenation reactions, ACS Appl. Mater. Interfaces 12 (48) (2020) 54146-54154. [44] X.H. Huang, Y.J. Xia, Y.J. Cao, X.S. Zheng, H.B. Pan, J.F. Zhu, C. Ma, H.W. Wang, J.J. Li, R. You, S.Q. Wei, W.X. Huang, J.L. Lu, Enhancing both selectivity and coking-resistance of a single-atom Pd1/C3N4 catalyst for acetylene hydrogenation, Nano Res. 10 (4) (2017) 1302-1312. [45] X. Long, W.Q. Chen, C. Lei, Q.Q. Xie, F.Z. Zhang, B.B. Huang, Ultrafine Pd nanoparticles@g-C3N4 for highly efficient dehalogenation of chlorinated environmental pollutant: Structure, efficacy and mechanisms, Sci. Total Environ. 775 (2021) 145178. [46] Y. Nan, Z.R. Deng, Z.Y. Xi, D.F. Wu, Controlled synthesis of α-Al2O3 supported Ag particles with tuning catalytic performance, J. Exp. Nanosci. 17 (1) (2022) 1-13. [47] J.Z. Chen, F. Lu, J.J. Zhang, W.Q. Yu, F. Wang, J. Gao, J. Xu, Immobilized Ru clusters in nanosized mesoporous zirconium silica for the aqueous hydrogenation of furan derivatives at room temperature, ChemCatChem 5 (10) (2013) 2822-2826. [48] J. Ohyama, A. Esaki, Y. Yamamoto, S. Arai, A. Satsuma, Selective hydrogenation of 2-hydroxymethyl-5-furfural to 2, 5-bis(hydroxymethyl)furan over gold sub-nano clusters, RSC Adv. 3 (4) (2013) 1033-1036. [49] M. Tamura, K. Tokonami, Y. Nakagawa, K. Tomishige, Rapid synthesis of unsaturated alcohols under mild conditions by highly selective hydrogenation, Chem. Commun. 49 (63) (2013) 7034-7036. [50] Wang XL, Fang WQ, Liu W, Jia Y, Jing D, Wang Y, Yang L-Y, Gong X-Q, Yao Y-F, Yang HG, Yao X. Broensted base site engineering of graphitic carbon nitride for enhanced photocatalytic activity. J Mater Chem A. 5 (36) (2017):19227-19236. |