[1] W. Liu, Y. Zhao, Z.H. Yu, X.Q. Wan, W.L. Li, Synthesis and dyeing performance of N, N-bis (2-cyanoethyl)-m-methylaniline disperse Dyes, Adv. Mater. Res. 550 (2012) 21-26. [2] Y.S. Choi, K.S. Lee, H.J. Kim, J.Y. Choi, G. Keum, Synthesis, spectral property and dyeing assessment of azo disperse dyes containing carbonyl and dicyanovinyl groups, Bull. Korean Chem. Soc. 34 (3) (2013) 863-867. [3] Y.Y. Lams, P.O. Nkeonye, K.A. Bello, M.K. Yakubu, A.O. Lawal, Synthesis of malononitrile-condensed disperse dyes and application on polyester and nylon fabrics. J. Text. (2014) 87-93. [4] M. Tinkara, L. Aleksandra, M. Gerhard, T. Matejka, Design and characterization of dicyanovinyl reactive dyes for the colorimetric detection of thiols and biogenic amines, Sensors. 18 (3) (2018) 814. [5] S.S. Abdullahi, H. Musa, S. Habibu, A.H. Birniwa, R.E. A. Mohammad, Comparative study and dyeing performance of as-synthesized azo heterocyclic monomeric, polymeric, and commercial disperse dyes, Turk. J. Chem. 46 (6) (2022) 1841-1852. [6] A.Y. Rulev, Weak nucleophiles in the aza-Michael reaction, Adv. Synth. Catal. 365 (12) (2023) 1908-1925. [7] B. Bereska, K. Czaja, J. Nowicki, J. Ilowska, A. Bereska, M. Muszynski, M. Szmatola, R. Grabowski, Grabowski, R. Effect of superbasic ionic liquids on the synthesis of dendritic polyamines via aza-Michael addition reaction, ChemistrySelect. 2 (31) (2017) 10020-10026. [8] E. Vedejs, M. Gingras, Aza-claisen rearrangements initiated by acid-catalyzed Michael addition, J. Am. Chem. Soc. 116 (2) (1994) 579-588. [9] S.A. Heininger, Cupric acetate catalyzed monocyanoethylation of aromatic amines, J. Org. Chem. 22 (10) (1957) 1213-1217. [10] P.H. Jakob, Process for the cyanoethylation of aromatic amines, US Pat., 3231601 (1966). [11] J.M. Ross, Mono-cyanoethylation of aromatic amines with an aqueous zinc chloride catalyst, US Pat., 3496213 (1970). [12] Y. Zhao, C. Ye, X. Tan, Z. Yang, Anilination of acrylonitrile with p-substituted anilines catalyzed by AlCl3, Chin. J. Org. Chem. 29 (4) (2009) 643-647. [13] R. Rajesh, J.A. Garg, P. Thiruvengetam, R. Kunjanpillai, A simple and general nickel-catalyzed Michael-type hydroamination of activated olefins using arylamines, Asian J. Org. Chem. 11 (11) (2022). [14] E.L. Yeakey, M.E. Brennan, Cyanoethylation of aromatic amines, US Pat., 3943162 (1976). [15] V. Polshettiwar, R.S. Varma, Tandem bis-aza-Michael addition reaction of amines in aqueous medium promoted by polystyrenesulfonic acid, Tetrahedron Lett. 48 (49) (2007) 8735-8738. [16] Y. Zhao, A New Technique for synthesizing N, N-dicyanoethylaniline, Dyestuff Industry. 38 (3) (2001) 39-40. [17] Y. Zhao, A New Technique for synthesis of N, N-dicyanoethyl-m-methylaniline, Chem. Prod. Technol. 8 (01) (2001) 11-13. [18] X. Xue, C.M. Xie, G.Z. Qian, M. Qiu, R.K. Jiang, M. Pasha, M.J. Shang, Y.H. Su, Control over selectivity for demethylation in dolutegravir synthesis in microreactors: Kinetics and mechanisms. Chem. Eng. Sci. 284 (2024) 119453. [19] F. Zhou, H.C. Liu, Z.H. Wen, B.Y. Zhang, G.W. Chen, Toward the efficient synthesis of pseudoionone from citral in a continuous-flow microreactor, Ind. Eng. Chem. Res. 57 (33) (2018) 11288-11298. [20] B. Gutmann, D. Cantillo, C.O. Kappe, Continuous-flow technology a tool for the safe manufacturing of active pharmaceutical ingredients, Angew. Chem. Int. Ed. 54 (23) (2015) 6688-6728. [21] Z.Q. Yu, Y.W. Lv, C.M. Yu, W.K. Su, A high-output, continuous selective and heterogeneous nitration of nitration of p-difluorobenzene, Org. Process Res. Dev. 17 (3) (2013) 438-442. [22] F.M. Akwi, P. Watts, Continuous flow chemistry: where are we now? Recent applications, challenges and limitations, Chem. Commun. 54 (99) (2018) 13894-13928. [23] W.Z. Guo, H.C. Bruining, H.J. Heeres, J. Yue, Insights into the reaction network and kinetics of xylose conversion over combined Lewis/Bronsted acid catalysts in a flow microreactor, Green Chem. 25 (15) (2023) 5878-5898. [24] S. Guo, G.K. Zhu, L.W. Zhan, B.D. Li, Continuous kilogram-scale process for the synthesis strategy of 1,3,5-trimethyl-2-nitrobenzene in microreactor, Chem. Eng. Res. Des. 178 (2022) 179-188. [25] Y.F. Zhou, Z.Yao, X.J. Zhang, R.J. Yang, J.P. Huang, Y.Q. Jin, Continuous-flow diazotization of weakly basic aromatic amines in a microreaction system, Ind. Eng. Chem. Res. 62 (12) (2023) 4995-5001. [26] F.M. Akwi, C. Bosma, P. Watts, A facile optimization of diazotization and phase transfer catalyzed azo-coupling Reactions in microreactors, J. Flow Chem. 6 (2) (2016) 73-79. [27] S. Sharma, R.A. Maurya, K.I. Min, G.Y. Jeong, D. P. Kim, Odorless isocyanide chemistry: an integrated microfluidic system for a multistep reaction sequence, Angew. Chem. 125 (29) (2013) 7712-7716. [28] L. Ducry, D.M. Roberge, Controlled autocatalytic nitration of phenol in a microreactor, Angew. Chem. Int. Ed. 44 (48) (2005) 7972-7975. [29] A. Guerrero-Corella, M.A. Valle-Amores, A. Fraile, J. Aleman, Enantioselective organocatalyzed aza-Michael addition reaction of 2-hydroxybenzophenone imines to nitroolefins under batch and flow conditions, Adv. Synth. Catal. 363 (15) (2021) 3845-3851. [30] F.J. Wang, J.P. Huang, J.H. Xu, Continuous-flow synthesis of azo dyes in a microreactor system, Chem. Eng. Process. 127 (2018) 43-49. [31] F.J. Wang, Y.C. Ding, J.H. Xu, Continuous-flow synthesis of pigment red 146 in a microreactor system, Ind. Eng. Chem. Res. 58 (36) (2019) 16338-16347. [32] F.J. Wang, J.P. Huang, J.H. Xu, Continuous-flow synthesis of the azo pigment yellow 14 using a three-stream micromixing process, Org. Process Res. Dev. 23 (12) (2019) 2637-2646. [33] H. A. Bruson, Cyanoethylation, Org. React. 5 (2004) 79-135. [34] B.D. Mather, K. Viswanathan, K.M. Miller, T.E. Long, Michael addition reactions in macromolecular design for emerging technologies, Prog. Polym. Sci. 31 (5) (2006) 487-531. [35] S. Schwolow, B. Heikenwalder, L. Abahmane, N. Kockmann, T. Roder, Kinetic and scale-up investigations of a Michael addition in microreactors, Org. Process Res. Dev. 18 (11) (2014) 1535-1544. |