[1] G.M. Wu, Oxygen plasma treatment of high performance fibers for composites, Mater. Chem. Phys. 85 (1) (2004) 81-87. [2] G.J. Yang, M. Park, S.J. Park, Recent progresses of fabrication and characterization of fibers-reinforced composites: a review, Compos. Commun. 14 (2019) 34-42. [3] L. Tang, Y.S. Tang, J.L. Zhang, Y.H. Lin, J. Kong, K. Zhou, J.W. Gu, High-strength super-hydrophobic double-layered PBO nanofiber-polytetrafluoroethylene nanocomposite paper for high-performance wave-transparent applications, Sci. Bull. 67 (21) (2022) 2196-2207. [4] C.H. Zhu, B. Wang, W.J. Wang, J.F. Meng, S.Q. Deng, X.N. Fan, T. Peng, W.L. Zhou, Y.T. Li, H. Li, C.X. Zhao, A facile method for crystallizing flower-like CuS on the surface of PBO fiber, Mater. Lett. 258 (2020) 126652. [5] T. Zhang, D.Y. Hu, J.H. Jin, S.L. Yang, G. Li, J.M. Jiang, Improvement of surface wettability and interfacial adhesion ability of poly(p-phenylene benzobisoxazole) (PBO) fiber by incorporation of 2, 5-dihydroxyterephthalic acid (DHTA), Eur. Polym. J. 45 (1) (2009) 302-307. [6] X.L. Li, L.H. Meng, Y.D. Wu, F. Wang, Y.D. Huang, Novel synthesis of high-molecular-weight prepolymer of poly(p-phenylene benzoxazole) in ionic liquids, Polym. Adv. Technol. 29 (6) (2018) 1727-1732. [7] P. Wang, Y.S. Tang, Z. Yu, J.W. Gu, J. Kong, Advanced aromatic polymers with excellent antiatomic oxygen performance derived from molecular precursor strategy and copolymerization of polyhedral oligomeric silsesquioxane, ACS Appl. Mater. Interfaces 7 (36) (2015) 20144-20155. [8] S. Halligudi, S.S. Khaire, Kinetics of hydrogenation of 4-chloro-2-nitrophenol catalyzed by Pt/carbon catalyst, J. Chem. Technol. Biotechnol. 77 (1) (2002) 25. [9] X.Z. Li, F. Qin, Q.G. Dai, S.J. Shao, X.Y. Wang, Hydrogenation-dechlorination of 2-chloro-4, 6-dinitroresorcinol over Pd/C catalysts, Res. Chem. Intermed. 44 (10) (2018) 6087-6104. [10] M. Toebes, Support effects in the hydrogenation of cinnamaldehyde over carbon nanofiber-supported platinum catalysts: characterization and catalysis, J. Catal. 226 (1) (2004) 215-225. [11] A. Parastaev, V. Muravev, E. Huertas Osta, A.J.F. van Hoof, T.F. Kimpel, N. Kosinov, E.J.M. Hensen, Boosting CO2 hydrogenation via size-dependent metal-support interactions in cobalt/ceria-based catalysts, Nat. Catal. 3 (6) (2020) 526-533. [12] K. Larmier, W.C. Liao, S. Tada, E. Lam, R. Verel, A. Bansode, A. Urakawa, A. Comas-Vives, C. Coperet, CO2-to-methanol hydrogenation on zirconia-supported copper nanoparticles: reaction intermediates and the role of the metal-support interface, Angew. Chem. Int. Ed Engl. 56 (9) (2017) 2318-2323. [13] S. Kattel, B.H. Yan, J.G. Chen, P. Liu, CO2 hydrogenation on Pt, Pt/SiO2 and Pt/TiO2: Importance of synergy between Pt and oxide support, J. Catal. 343 (2016) 115-126. [14] A.M. Fuente, G. Pulgar, F. Gonzalez, C. Pesquera, C. Blanco, Activated carbon supported Pt catalysts: effect of support texture and metal precursor on activity of acetone hydrogenation, Appl. Catal. A Gen. 208 (1-2) (2001) 35-46. [15] P. Sangeetha, K. Shanthi, K.S.R. Rao, B. Viswanathan, P. Selvam, Hydrogenation of nitrobenzene over palladium-supported catalysts-Effect of support, Appl. Catal. A Gen. 353 (2) (2009) 160-165. [16] J. Grunes, J. Zhu, M. Yang, G.A. Somorjai, CO poisoning of ethylene hydrogenation over Pt catalysts: a comparison of Pt(111) single crystal and Pt nanoparticle activities, Catal. Lett. 86 (4) (2003) 157-161. [17] A. Cooper, B. Bachiller-Baeza, J.A. Anderson, I. Rodriguez-Ramos, A. Guerrero-Ruiz, Design of surface sites for the selective hydrogenation of 1, 3-butadiene on Pd nanoparticles: Cu bimetallic formation and sulfur poisoning, Catal. Sci. Technol. 4 (5) (2014) 1446-1455. [18] M. Kondeboina, S.S. Enumula, V.R.B. Gurram, J. Yadagiri, D.R. Burri, S.R.R. Kamaraju, Mesoporous silica supported cobalt catalysts for gas phase hydrogenation of nitrobenzene: role of pore structure on stable catalytic performance, New J. Chem. 42 (19) (2018) 15714-15725. [19] J. Hajek, N. Kumar, V. Nieminen, P. Maki-Arvela, T. Salmi, D.Y. Murzin, L. Cerveny, Deactivation in liquid-phase hydrogenation of cinnamaldehyde over alumosilicate-supported ruthenium and platinum catalysts, Chem. Eng. J. 103 (1-3) (2004) 35-43. [20] X.X. Zhang, B.N. Zong, M.H. Qiao, Reactivation of spent Pd/AC catalyst by supercritical CO2 fluid extraction, AlChE. J. 55 (9) (2009) 2382-2388. [21] C.H. Bartholomew, Mechanisms of catalyst deactivation, Appl. Catal. A Gen. 212 (1-2) (2001) 17-60. [22] J. Zhu, A. Holmen, D. Chen, Carbon nanomaterials in catalysis: proton affinity, chemical and electronic properties, and their catalytic consequences, ChemCatChem 5 (2) (2013) 378-401. [23] Y.P. Zhai, Y.Q. Dou, D.Y. Zhao, P.F. Fulvio, R.T. Mayes, S. Dai, Carbon materials for chemical capacitive energy storage, Adv. Mater. 23 (42) (2011) 4828-4850. [24] E. Antolini, Carbon supports for low-temperature fuel cell catalysts, Appl. Catal. B Environ. 88 (1-2) (2009) 1-24. [25] M.M. Liu, R.Z. Zhang, W. Chen, Graphene-supported nanoelectrocatalysts for fuel cells: synthesis, properties, and applications, Chem. Rev. 114 (10) (2014) 5117-5160. [26] A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, U. Poschl, Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information, Carbon 43 (8) (2005) 1731-1742. [27] R. Van Hardeveld, F. Hartog, The statistics of surface atoms and surface sites on metal crystals, Surf. Sci. 15 (2) (1969) 189-230. |