中国化学工程学报 ›› 2024, Vol. 73 ›› Issue (9): 189-201.DOI: 10.1016/j.cjche.2024.05.011
Xinglong Xiong1,2, Baozhong Ma1,2, Xiang Li1,2, Jiancheng Yu1,2, Longfei Shi1,2, Chengyan Wang1,2, Yongqiang Chen1,2
收稿日期:
2024-02-25
修回日期:
2024-05-16
接受日期:
2024-05-19
出版日期:
2024-09-28
发布日期:
2024-06-04
通讯作者:
Baozhong Ma,E-mail:bzhma_ustb@yeah.net
基金资助:
Xinglong Xiong1,2, Baozhong Ma1,2, Xiang Li1,2, Jiancheng Yu1,2, Longfei Shi1,2, Chengyan Wang1,2, Yongqiang Chen1,2
Received:
2024-02-25
Revised:
2024-05-16
Accepted:
2024-05-19
Online:
2024-09-28
Published:
2024-06-04
Contact:
Baozhong Ma,E-mail:bzhma_ustb@yeah.net
Supported by:
摘要: Nickel is a strategic resource in social life and defense technology, playing an essential role in many fields, such as alloys and batteries. With the decrease in nickel sulfide, it is of great significance to extract nickel from laterite. The limonitic laterite is a kind of rich nickel-cobalt-scandium resource. At present, there are few reviews on the extraction of limonitic laterite. This study reviews the hydrometallurgical processes for limonitic laterite ores and the methods of recovering valuable elements. The mineralogical characteristics are analyzed, and the typical mineral compositions are summarized. The main hydrometallurgical processes are compared and discussed, including reduction roasting-ammonia leaching, sulfuric acid pressure leaching, nitric acid pressure leaching, and the atmospheric nitric acid leaching (DNi process). The methods of recovering nickel, cobalt, scandium, and iron are emphatically outlined. Finally, reasonable suggestions are proposed for comprehensive utilization. This study can provide a reference for industrial development and diversified applications.
Xinglong Xiong, Baozhong Ma, Xiang Li, Jiancheng Yu, Longfei Shi, Chengyan Wang, Yongqiang Chen. Hydrometallurgical process and recovery of valuable elements for limonitic laterite: A review[J]. 中国化学工程学报, 2024, 73(9): 189-201.
Xinglong Xiong, Baozhong Ma, Xiang Li, Jiancheng Yu, Longfei Shi, Chengyan Wang, Yongqiang Chen. Hydrometallurgical process and recovery of valuable elements for limonitic laterite: A review[J]. Chinese Journal of Chemical Engineering, 2024, 73(9): 189-201.
[1] H.H. Du, M.N. Jiang, Z.W. Zhu, Z.K. Wang, S. To, Ultraprecision tool-servo cutting of pure nickel for fabricating micro/nanostructure arrays, Mater. Des. 221 (2022) 110913. [2] S.S.M. Prabu, S. Aravindan, S. Ghosh, I.A. Palani, Solid-state welding of nitinol shape memory alloys: a review, Mater. Today Commun. 35 (2023) 105728. [3] H. Zhang, C.H. Zhang, Q. Wang, C.L. Wu, S. Zhang, J. Chen, A.O. Abdullah, Effect of Ni content on stainless steel fabricated by laser melting deposition, Opt. Laser Technol. 101 (2018) 363-371. [4] H.J. Lv, C.L. Li, Z.K. Zhao, B.R. Wu, D.B. Mu, A review: Modification strategies of nickel-rich layer structure cathode (Ni≥0.8) materials for lithium ion power batteries, J. Energy Chem. 60 (2021) 435-450. [5] Nickel Institute. First use of nickel, 2021, https://nickelinstitute.org/en/about-nickel-and-its-applications/#04-first-use-nickel. (Accessed 3 April 2023). [6] F.B. Meng, X.Y. Xiong, L. Tan, B. Yuan, R.Z. Hu, Strategies for improving electrochemical reaction kinetics of cathode materials for subzero-temperature Li-ion batteries: a review, Energy Storage Mater. 44 (2022) 390-407. [7] S. Fashu, V. Trabadelo, A critical review on development, performance and selection of stainless steels and nickel alloys for the wet phosphoric acid process, Mater. Des. 227 (2023) 111739. [8] Nickel Institute, Joint Due Diligence Standard for Copper, Lead, Nickel and Zinc,2021, https://nickelinstitute.org/media/8d8cd00d3a4894a/joint-due-diligence-standard_final_09feb21.pdf. (Accessed 11 April 2023). [9] M. Asadrokht, A. Zakeri, Chemo-physical concentration of a Low-grade nickel laterite ore, Miner. Eng. 178 (2022) 107398. [10] H.C. Xu, X.T. Peng, K.W. Ta, T.R. Song, M.R. Du, J.W. Li, S. Chen, Z.G. Qu, Structure and composition of micro-manganese nodules in deep-sea carbonate from the Zhaoshu Plateau, north of the South China Sea, Minerals 10 (11) (2020) 1016. [11] Z. Hajjar, F. Gervilla, A. Essaifi, A. Wafik, Mineralogical and geochemical features of the alteration processes of magmatic ores in the Beni Bousera ultramafic massif (north Morocco), J. Afr. Earth Sci. 132 (2017) 47-63. [12] K. Su, F. Wang, J. Parianos, Z.X. Cui, B.J. Zhao, X.D. Ma, Alternative resources for producing nickel matte - laterite ores and polymetallic nodules, Miner. Process. Extr. Metall. Rev. 43 (5) (2022) 584-597. [13] H.Y. Tian, Z.Q. Guo, R.N. Zhan, J. Pan, D.Q. Zhu, C.C. Yang, L.T. Pan, Effective and economical treatment of low-grade nickel laterite by a duplex process of direct reduction-magnetic separation & rotary kiln-electric furnace and its industrial application, Powder Technol. 394 (2021) 120-132. [14] U.S Geological Survey. Mineral Commodity Summaries, 2014-2023, https://www.usgs.gov/centers/national-minerals-information-center/mineral-commodity-summaries. (Accessed 6 November 2023). [15] X.L. Zeng, M. Xu, J.H. Li, Examining the sustainability of China’s nickel supply: 1950-2050, Resour. Conserv. Recycl. 139 (2018) 188-193. [16] X.R. Zhou, S.X. Zheng, H. Zhang, Q.Y. Liu, W.L. Xing, X.T. Li, Y.W. Han, P. Zhao, Risk transmission of trade price fluctuations from a nickel chain perspective: based on systematic risk entropy and granger causality networks, Entropy 24 (9) (2022) 1221. [17] B. Lim, H.S. Kim, J. Park, Implicit interpretation of Indonesian export bans on LME nickel prices: evidence from the announcement effect, Risks 9 (5) (2021) 93. [18] International Nickel Study Group (INSG), the World Nickel Factbook 2021, 2022, https://insg.org/wp-content/uploads/2022/02/publist_The-World-Nickel-Factbook-2021.pdf. (Accessed 10 April 2023). [19] A.H. Pandyaswargo, A.D. Wibowo, M.F.N. Maghfiroh, A. Rezqita, H. Onoda, The emerging electric vehicle and battery industry in Indonesia: actions around the nickel ore export ban and a SWOT analysis, Batteries 7 (4) (2021) 80. [20] X.J. Dong, F. An, Z.L. Dong, Z. Wang, M.H. Jiang, P. Yang, H.G. An, Optimization of the international nickel ore trade network, Resour. Policy 70 (2021) 101978. [21] F. He, B.Z. Ma, C.Y. Wang, Y.Q. Chen, X.J. Hu, Adsorption of Pb(II) and Cd(II) hydrates via inexpensive limonitic laterite: Adsorption characteristics and mechanisms, Sep. Purif. Technol. 310 (2023) 123234. [22] M.J. Rao, J. Chen, T. Zhang, M.S. Hu, J.X. You, J. Luo, Atmospheric acid leaching of powdery Ni-Co-Fe alloy derived from reductive roasting of limonitic laterite ore and recovery of battery grade iron phosphate, Hydrometallurgy 218 (2023) 106058. [23] A. Ilyas, K. Koike, Geostatistical modeling of ore grade distribution from geomorphic characterization in a laterite nickel deposit, Nat. Resour. Res. 21 (2) (2012) 177-191. [24] Elias M. Nickel laterite deposits - geological overview, resources and exploitation[J]. Giant ore deposits: Characteristics, genesis and exploration. CODES Special Publication, 2002, 4: 205-220. [25] Z. Jankovic, V.G. Papangelakis, Measurement of pH in high-temperature nickel laterite pressure acid leach process solutions, Hydrometallurgy 105 (1-2) (2010) 155-160. [26] S. Wibowo, M.F. Rosana, A.D. Haryanto, Local topographic model using position index for analyzing the characteristics of unserpentinized lateritic zones in sorowako nickeliferous laterite deposit, Indonesia, Int. J. Adv. Sci. Eng. Inf. Technol. 8 (4) (2018) 1138. [27] B. Dong, Q.H. Tian, Z.P. Xu, X.Y. Guo, Q.G. Wang, D. Li, The effect of pre-roasting on atmospheric sulfuric acid leaching of saprolitic laterites, Hydrometallurgy 218 (2023) 106063. [28] T. Schmidt, M. Buchert, L. Schebek, Investigation of the primary production routes of nickel and cobalt products used for Li-ion batteries, Resour. Conserv. Recycl. 112 (2016) 107-122. [29] Pan J, Tian H, Zhu D, et al. Study on development and utilization status of laterite nickel ore and supply & demand analysis of nickel resource[C]//Asian Pacific Organization for Lateritic-Nickel Ore (APOL). 2019:10. https://doi.org/10.26914/c.cnkihy.2019.010066. [30] A. Murofushi, T. Otake, K. Sanematsu, K.Z. Ya, A. Ito, R. Kikuchi, T. Sato, Mineralogical evolution of a weathering profile in the Tagaung Taung Ni laterite deposit: significance of smectite in the formation of high-grade Ni ore in Myanmar, Miner. Deposita 57 (7) (2022) 1107-1122. [31] G. Mongelli, B. Taghipour, R. Sinisi, S. Khadivar, Mineralization and element redistribution in the Chah-Gheib Ni-laterite ore zone, Bavanat, Zagros Belt, Iran, Ore Geol. Rev. 111 (2019) 102990. [32] M.J. Taufik, D.N. Martono, S.W. Soelarno, SWOT analysis in determining environmental risk management strategy in medium scale nickel laterite mining (case study in PT rohul energi Indonesia), IOP Conf. Ser.: Earth Environ. Sci. 940 (1) (2021) 012023. [33] T. Aiglsperger, J.A. Proenza, J.F. Lewis, M. Labrador, M. Svojtka, A. Rojas-Puron, F. Longo, J.Durisova, Critical metals (REE, Sc, PGE) in Ni laterites from Cuba and the Dominican Republic, Ore Geol. Rev. 73 (2016) 127-147. [34] T. Aiglsperger, J.A. Proenza, F. Zaccarini, J.F. Lewis, G. Garuti, M. Labrador, F. Longo, Platinum Group minerals (PGM) in the Falcondo Ni-laterite deposit, Loma Caribe peridotite (Dominican Republic), Miner. Deposita 50 (1) (2015) 105-123. [35] M. Economou-Eliopoulos, M. Laskou, D. Eliopoulos, I. Megremi, S. Kalatha, G. Eliopoulos, Origin of critical metals in Fe-Ni laterites from the balkan peninsula: opportunities and environmental risk, Minerals 11 (9) (2021) 1009. [36] I.H. Abbas, A. Maulana, Petrology of ultramafic Rocks from PT. Sebuku Iron Lateritic Ore (SILO) concession area and Its Effect on Ni and Fe in Sebuku Island, South Kalimantan, Indonesia, IOP Conf. Ser.: Earth Environ. Sci. 921 (1) (2021) 012057. [37] A.R. Kurniawan, T. Murayama, S. Nishikizawa, Appraising affected community perceptions of implementing programs listed in the environmental impact statement: a case study of Nickel smelter in Indonesia, Extr. Ind. Soc. 8 (1) (2021) 363-373. [38] A. van der Ent, A.J.M. Baker, M.M.J. van Balgooy, A. Tjoa, Ultramafic nickel laterites in Indonesia (Sulawesi, Halmahera): Mining, nickel hyperaccumulators and opportunities for phytomining, J. Geochem. Explor. 128 (2013) 72-79. [39] G. Konopka, K. Szamalek, K. Zglinicki, Ni-co bearing laterites from Halmahera Island (Indonesia), Appl. Sci. 12 (15) (2022) 7586. [40] W. Fu, J.W. Yang, M.L. Yang, B.C. Pang, X.J. Liu, H.J. Niu, X.R. Huang, Mineralogical and geochemical characteristics of a serpentinite-derived laterite profile from East Sulawesi, Indonesia: Implications for the lateritization process and Ni supergene enrichment in the tropical rainforest, J. Asian Earth Sci. 93 (2014) 74-88. [41] W. Fu, Y.M. Zhang, C.J. Pang, X.W. Zeng, X.R. Huang, M.L. Yang, Y. Shao, H. Lin, Garnierite mineralization from a serpentinite-derived lateritic regolith, Sulawesi Island, Indonesia: Mineralogy, geochemistry and link to hydrologic flow regime, J. Geochem. Explor. 188 (2018) 240-256. [42] A. Ito, T. Otake, A. Maulana, K. Sanematsu, Sufriadin, T. Sato, Geochemical constraints on the mobilization of Ni and critical metals in laterite deposits, Sulawesi, Indonesia: a mass-balance approach, Resour. Geol. 71 (3) (2021) 255-282. [43] Nickel Asia Corporation. 2022 Annual and Sustainability Report. https://nickelasia.com/assets/documents/NAC22ASR-FA-060923.pdf. (Accessed 6 November 2023). [44] Y. Ogura, K. Murata, M. Iwai, Relation between chemical composition and particle-size distribution of ores in the profile of nickeliferous laterite deposits of the Rio Tuba Mine, Philippines, Chem. Geol. 60 (1-4) (1987) 259-271. [45] B.Z. Ma, C.Y. Wang, W.J. Yang, Y.Q. Chen, B. Yang, Comprehensive utilization of Philippine laterite ore, part 1: Design of technical route and classification of the initial ore based on mineralogical analysis, Int. J. Miner. Process. 124 (2013) 42-49. [46] Geoscience Australia. Australian Resource Reviews: Nickel 2020, 2023. https://d28rz98at9flks.cloudfront.net/145883/145883_00_0.pdf. (Accessed 6 November 2023). [47] A.L.D. Paul, A. van der Ent, P.D. Erskine, Scandium biogeochemistry at the ultramafic Lucknow deposit, Queensland, Australia, J. Geochem. Explor. 204 (2019) 74-82. [48] F. Putzolu, M. Boni, N. Mondillo, M. Maczurad, F. Pirajno, Ni-Co enrichment and High-Tech metals geochemistry in the Wingellina Ni-Co oxide-type laterite deposit (Western Australia), J. Geochem. Explor. 196 (2019) 282-296. [49] L. Santoro, F. Putzolu, N. Mondillo, M. Boni, R. Herrington, Trace element geochemistry of iron-(oxy)-hydroxides in Ni(Co)-laterites: Review, new data and implications for ore forming processes, Ore Geol. Rev. 140 (2022) 104501. [50] S. Jaireth, D.M. Hoatson, Y. Miezitis, Geological setting and resources of the major rare-earth-element deposits in Australia, Ore Geol. Rev. 62 (2014) 72-128. [51] A. Gaudin, A. Decarreau, Y. Noack, O. Grauby, Clay mineralogy of the nickel laterite ore developed from serpentinised peridotites at Murrin Murrin, Western Australia, Aust. J. Earth Sci. 52 (2) (2005) 231-241. [52] F. Putzolu, G. Balassone, M. Boni, M. Maczurad, N. Mondillo, J. Najorka, F. Pirajno, Mineralogical association and Ni-Co deportment in the Wingellina oxide-type laterite deposit (Western Australia), Ore Geol. Rev. 97 (2018) 21-34. [53] F. Putzolu, I. Abad, G. Balassone, M. Boni, N. Mondillo, Ni-bearing smectites in the Wingellina laterite deposit (Western Australia) at nanoscale: TEM-HRTEM evidences of the formation mechanisms, Appl. Clay Sci. 196 (2020) 105753. [54] L. Santoro, F. Putzolu, N. Mondillo, R. Herrington, J. Najorka, M. Boni, M. Dosbaba, M. Maczurad, G. Balassone, Quantitative mineralogical evaluation of Ni-Co laterite ores through XRPD-QPA- and automated SEM-based approaches: The Wingellina (Western Australia) case study, J. Geochem. Explor. 223 (2021) 106695. [55] D.M. Evans, J.P.P.M. Hunt, J.R. Simmonds, An overview of nickel mineralisation in Africa with emphasis on the Mesoproterozoic East African Nickel Belt (EANB), Episodes 39 (2) (2016) 318-333. [56] M.D. Prendergast, Landscape evolution, regolith formation and nickel laterite development in the northern part of the great dyke, Zimbabwe, S Afr N J. Geol. 116 (2) (2013) 219-240. [57] A. Berger, R. Frei, The fate of chromium during tropical weathering: a laterite profile from Central Madagascar, Geoderma 213 (2014) 521-532. [58] F. Trolard, G. Bourrie, E. Jeanroy, A.J. Herbillon, H. Martin, Trace metals in natural iron oxides from laterites: a study using selective kinetic extraction, Geochim. Cosmochim. Acta 59 (7) (1995) 1285-1297. [59] A. Deblond, L. Tack, Main characteristics and review of mineral resources of the Kabanga-Musongati mafic-ultramafic alignment in Burundi, J. Afr. Earth Sci. 29 (2) (1999) 313-328. [60] D.M. Evans, Chromite compositions in nickel sulphide mineralized intrusions of the Kabanga-Musongati-Kapalagulu Alignment, East Africa: Petrologic and exploration significance, Ore Geol. Rev. 90 (2017) 307-321. [61] D. Zhao, B.Z. Ma, B.D. Shi, Z.G. Zhou, P. Xing, C.Y. Wang, Mineralogical characterization of limonitic laterite from Africa and its proposed processing route, J. Sustain. Metall. 6 (3) (2020) 491-503. [62] P.Y. Xu, Q. Wang, C. Li, Q. Yu, H. Fang, J.F. Su, X.Y. Guo, Relationship between process mineralogical characterization and beneficiability of low-grade laterite nickel ore, J. Cent. South Univ. 28 (10) (2021) 3061-3073. [63] D.Q. Zhu, L.T. Pan, Z.Q. Guo, J. Pan, F. Zhang, Utilization of limonitic nickel laterite to produce ferronickel concentrate by the selective reduction-magnetic separation process, Adv. Powder Technol. 30 (2) (2019) 451-460. [64] G. Senanayake, J. Childs, B.D. Akerstrom, D. Pugaev, Reductive acid leaching of laterite and metal oxides-a review with new data for Fe(Ni, Co) OOH and a limonitic ore, Hydrometallurgy 110 (1-4) (2011) 13-32. [65] S. Ghosh, S.K. Guchhait, X.F. Hu, Characterization and evolution of primary and secondary laterites in northwestern Bengal Basin, West Bengal, India, J. Palaeogeogr. 4 (2) (2015) 203-230. [66] G.M. da Costa, D.J.F. Couto, F.P.M. de Castro, Existence of maghemite and trevorite in nickel laterites, Miner. Process. Extr. Metall. Rev. 34 (5) (2013) 304-319. [67] K. Quast, J. Addai-Mensah, W. Skinner, Preconcentration strategies in the processing of nickel laterite ores Part 5: Effect of mineralogy, Miner. Eng. 110 (2017) 31-39. [68] R. Fan, A.R. Gerson, Mineralogical characterisation of Indonesian laterites prior to and post atmospheric leaching, Hydrometallurgy 134 (2013) 102-109. [69] Gleeson S A, Butt C R M, Elias M. Nickel laterites: a review[J]. SEG Discovery, 2003 (54): 1-18. https://doi.org/10.5382/SEGnews.2003-54.fea. [70] J. Sun, H.B. Qin, S.T. Yang, K. Sanematsu, Y. Takahashi, New insights into the distribution and speciation of nickel in a Myanmar laterite, Chem. Geol. 604 (2022) 120943. [71] R. Fan, A.R. Gerson, Nickel geochemistry of a Philippine laterite examined by bulk and microprobe synchrotron analyses, Geochim. Cosmochim. Acta 75 (21) (2011) 6400-6415. [72] C.A.J. Tupaz, Y. Watanabe, K. Sanematsu, T. Echigo, Mineralogy and geochemistry of the Berong Ni-Co laterite deposit, Palawan, Philippines, Ore Geol. Rev. 125 (2020) 103686. [73] M. Ulrich, M. Cathelineau, M. Munoz, M.C. Boiron, Y. Teitler, A.M. Karpoff, The relative distribution of critical (Sc, REE) and transition metals (Ni, Co, Cr, Mn, V) in some Ni-laterite deposits of New Caledonia, J. Geochem. Explor. 197 (2019) 93-113. [74] D.Q. Zhu, Y. Cui, S. Hapugoda, K. Vining, J. Pan, Mineralogy and crystal chemistry of a low grade nickel laterite ore, Trans. Nonferrous Met. Soc. China 22 (4) (2012) 907-916. [75] H.B. Qin, S.T. Yang, M. Tanaka, K. Sanematsu, C. Arcilla, Y. Takahashi, Chemical speciation of scandium and yttrium in laterites: New insights into the control of their partitioning behaviors, Chem. Geol. 552 (2020) 119771. [76] H.B. Qin, S.T. Yang, M. Tanaka, K. Sanematsu, C. Arcilla, Y. Takahashi, Scandium immobilization by goethite: Surface adsorption versus structural incorporation, Geochim. Cosmochim. Acta 294 (2021) 255-272. [77] M. Chasse, W.L. Griffin, S.Y. O’Reilly, G. Calas, Scandium speciation in a world-class lateritic deposit, Geochem. Persp. Let. (2016) 105-114. [78] M. Chasse, W.L. Griffin, S.Y. O’Reilly, G. Calas, Australian laterites reveal mechanisms governing scandium dynamics in the critical zone, Geochim. Cosmochim. Acta 260 (2019) 292-310. [79] J.C.OE. Andersen, G.K. Rollinson, B. Snook, R. Herrington, R.J. Fairhurst, Use of QEMSCAN® for the characterization of Ni-rich and Ni-poor goethite in laterite ores, Miner. Eng. 22 (13) (2009) 1119-1129. [80] D. Fandeur, F. Juillot, G. Morin, L. Olivi, A. Cognigni, S.M. Webb, J.P. Ambrosi, E. Fritsch, F. Guyot, G.E. Brown Jr, XANES evidence for oxidation of Cr(III) to Cr(VI) by Mn-oxides in a lateritic regolith developed on serpentinized ultramafic rocks of New Caledonia, Environ. Sci. Technol. 43 (19) (2009) 7384-7390. [81] C.A.J. Tupaz, Y. Watanabe, K. Sanematsu, T. Echigo, Spectral and chemical studies of iron and manganese oxyhydroxides in laterite developed on ultramafic rocks, Resour. Geol. 71 (4) (2021) 377-391. [82] A.U. Rajapaksha, M. Vithanage, R. Weerasooriya, C.B. Dissanayake, Surface complexation of nickel on iron and aluminum oxides: a comparative study with single and dual site clays, Colloids Surf. A Physicochem. Eng. Aspects 405 (2012) 79-87. [83] C. Domenech, C. Villanova-de-Benavent, J.A. Proenza, E. Tauler, L. Lara, S. Gali, J.M. Soler, M. Campeny, J. Ibanez-Insa, Co-Mn mineralisations in the Ni laterite deposits of loma caribe (Dominican republic) and loma de Hierro (Venezuela), Minerals 12 (8) (2022) 927. [84] C. Ansart, C. Quantin, D. Calmels, T. Allard, J.Y. Roig, R. Coueffe, B. Heller, R. Pinna-Jamme, J. Nouet, S. Reguer, D. Vantelon, C. Gautheron, (U-Th)/He geochronology constraints on lateritic duricrust formation on the Guiana shield, Front. Earth Sci. 10 (2022) 888993. [85] C. Domenech, S. Gali, C. Villanova-de-Benavent, J.M. Soler, J.A. Proenza, Reactive transport model of the formation of oxide-type Ni-laterite profiles (Punta Gorda, Moa Bay, Cuba), Miner. Deposita 52 (7) (2017) 993-1010. [86] Li D. Enrichment and recovery of scandium in hydrometallurgical process of Ramu laterite nickel ore[J]. Mining & Metallurgy, 2019, 28(4): 79-83. https://doi.org/10.3969/j.issn.1005-7854.2019.04.014. [87] Zhang W, Ye H, Du Y, et al. Research on process mineralogy and beneficiation technology of a limonite-type lateritic nickel ore in Indonesia [J]. Nonferrous Metals Engineering, 2023, 13(12): 90-99. https://doi.org/10.3969/j.issn.2095-1744.2023.12.011. [88] M.H. Caron, Fundamental and practical factors in ammonia leaching of nickel and cobalt ores, JOM 2 (1) (1950) 67-90. [89] Rhamdhani M A, Chen J, Hidayat T, et al. Advances in research on nickel production through the Caron process[C]//Proceedings of EMC. 2009, 2009: 899-913. [90] Zhao D, Ma B, Wang C, et al. Research progress of limonitic laterite hydrometallurgy[J]. Journal of Central South University (Science and Technology), 2023, 54(2): 401-414. https://doi.org/10.11817/j.issn.1672-7207.2023.02.001. [91] G. Senanayake, A. Senaputra, M.J. Nicol, Effect of thiosulfate, sulfide, copper(II), cobalt(II)/(III) and iron oxides on the ammoniacal carbonate leaching of nickel and ferronickel in the Caron process, Hydrometallurgy 105 (1-2) (2010) 60-68. [92] P. Meshram, Abhilash, B.D. Pandey, Advanced review on extraction of nickel from primary and secondary sources, Miner. Process. Extr. Metall. Rev. 40 (3) (2019) 157-193. [93] S. Ilyas, R.R. Srivastava, H. Kim, N. Ilyas, R. Sattar, Extraction of nickel and cobalt from a laterite ore using the carbothermic reduction roasting-ammoniacal leaching process, Sep. Purif. Technol. 232 (2020) 115971. [94] G. Thompson, G. Senanayake, Effect of iron(II) and manganese(II) on oxidation and co-precipitation of cobalt(II) in ammonia/ammonium carbonate solutions during aeration - An update and insight to cobalt losses in the Caron process for laterite ores, Hydrometallurgy 181 (2018) 53-63. [95] S.L. Chen, X.Y. Guo, W.T. Shi, D. Li, Extraction of valuable metals from low-grade nickeliferous laterite ore by reduction roasting-ammonia leaching method, J. Cent. South Univ. Technol. 17 (4) (2010) 765-769. [96] B.Z. Ma, C.Y. Wang, W.J. Yang, F. Yin, Y.Q. Chen, Screening and reduction roasting of limonitic laterite and ammonia-carbonate leaching of nickel-cobalt to produce a high-grade iron concentrate, Miner. Eng. 50 (2013) 106-113. [97] M. Asadrokht, A. Zakeri, Recovery of nickel oxide nanorods from a laterite-originated intermediate product by ammonia leach-deammoniation method, Hydrometallurgy 221 (2023) 106132. [98] J.H. Li, Z.F. Chen, B.P. Shen, Z.F. Xu, Y.F. Zhang, The extraction of valuable metals and phase transformation and formation mechanism in roasting-water leaching process of laterite with ammonium sulfate, J. Clean. Prod. 140 (2017) 1148-1155. [99] K. Liu, Q.Y. Chen, Z.L. Yin, H.P. Hu, Z.Y. Ding, Kinetics of leaching of a Chinese laterite containing maghemite and magnetite in sulfuric acid solutions, Hydrometallurgy 125 (2012) 125-136. [100] M.E. Chalkley, M.J. Collins, C. Iglesias, N.E. Tuffrey, Effect of magnesium on pressure leaching of moa laterite ore, Can. Metall. Q. 49 (3) (2010) 227-234. [101] H.X. Liu, V.G. Papangelakis, Chemical modeling of high temperature aqueous processes, Hydrometallurgy 79 (1-2) (2005) 48-61. [102] B.I. Whittington, D. Muir, Pressure acid leaching of nickel laterites: a review, Miner. Process. Extr. Metall. Rev. 21 (6) (2000) 527-599. [103] T. Gultom, A. Sianipar, High pressure acid leaching: a newly introduced technology in Indonesia, IOP Conf. Ser.: Earth Environ. Sci. 413 (1) (2020) 012015. [104] M. Ali Recai Onal, Y. Ali Topkaya, Pressure acid leaching of Caldag lateritic nickel ore: an alternative to heap leaching, Hydrometallurgy 142 (2014) 98-107. [105] N.E. Timms, J. Li, S.M. Reddy, Quantitative microstructural characterization of natrojarosite scale formed during high-pressure acid leaching of lateritic nickel ore, Am. Mineral. 94 (8-9) (2009) 1111-1119. [106] Shibayama K, Yokogawa T, Sato H, et al. Taganito HPAL plant project[J]. Minerals Engineering, 2016, 88: 61-65. https://doi.org/10.1016/j.mineng.2015.10.002. [107] A. Ucyildiz, I. Girgin, High pressure sulphuric acid leaching of lateritic nickel ore, Physicochem. Probl. Miner. Process. 53 (2016) 475-488. [108] K. Liu, Q.Y. Chen, H.P. Hu, Z.L. Yin, B.K. Wu, Pressure acid leaching of a Chinese laterite ore containing mainly maghemite and magnetite, Hydrometallurgy 104 (1) (2010) 32-38. [109] D.H. Rubisov, V.G. Papangelakis, Sulphuric acid pressure leaching of laterites-speciation and prediction of metal solubilities “at temperature”, Hydrometallurgy 58 (1) (2000) 13-26. [110] D. Georgiou, V.G. Papangelakis, Characterization of limonitic laterite and solids during sulfuric acid pressure leaching using transmission electron microscopy, Miner. Eng. 17 (3) (2004) 461-463. [111] B.I. Whittington, Characterization of scales obtained during continuous nickel laterite pilot-plant leaching, Metall. Mater. Trans. B 31 (6) (2000) 1175-1186. [112] B.I. Whittington, J.A. Johnson, L.P. Quan, R.G. McDonald, D.M. Muir, Pressure acid leaching of arid-region nickel laterite ore Part II. Effect of ore type, Hydrometallurgy 70 (1-3) (2003) 47-62. [113] G.C. Caetano, I.C. Ostroski, M.A.S.D. de Barros, Lateritic nickel and cobalt recovery routes: strategic technologies, Miner. Process. Extr. Metall. Rev. (2024) 1-15. [114] Wang C, Cao Z, Ma B, et al. Nitric acid pressure leaching of laterite ores[J]. The Chinese Journal of Process Engineering, 2019, 1(19): 51-57. https://doi.org/10.12034/j.issn.1009-606X.219136. [115] Wang C and Ma B, Smelting of laterite nickel ore[M], Beijing: Metallurgical industry press, 2020. [116] S. Shao, B.Z. Ma, X. Wang, W.J. Zhang, Y.Q. Chen, C.Y. Wang, Nitric acid pressure leaching of limonitic laterite ores: Regeneration of HNO3 and simultaneous synthesis of fibrous CaSO4·2H2O by-products, J. Cent. South Univ. 27 (11) (2020) 3249-3258. [117] D. Zhao, B.Z. Ma, C.Y. Wang, Y.Q. Zhang, S.Y. Shi, Y.Q. Chen, Investigation of the thermal behavior of Mg(NO3)2·6H2O and its application for the regeneration of HNO3 and MgO, Chem. Eng. J. 433 (2022) 133804. [118] F. He, B.Z. Ma, C.Y. Wang, Y.Q. Chen, Mineral evolution and porous kinetics of nitric acid pressure leaching limonitic laterite, Miner. Eng. 181 (2022) 107544. [119] B.Z. Ma, W.J. Yang, B. Yang, C.Y. Wang, Y.Q. Chen, Y.L. Zhang, Pilot-scale plant study on the innovative nitric acid pressure leaching technology for laterite ores, Hydrometallurgy 155 (2015) 88-94. [120] Z.H. Cao, B.Z. Ma, C.Y. Wang, Y.Q. Chen, B. Liu, P. Xing, W.J. Zhang, E-pH diagrams for the metal-water system at 150℃: Thermodynamic analysis and application for extraction and separation of target metals from saprolitic laterite, Miner. Eng. 152 (2020) 106365. [121] F. He, B.Z. Ma, Z.J. Qiu, C.Y. Wang, Y.Q. Chen, X.J. Hu, Enhanced extraction of nickel from limonitic laterite via improved nitric acid pressure leaching process, Miner. Eng. 201 (2023) 108170. [122] W.W. Zhang, B.Z. Ma, J.C. Yu, C.Y. Wang, Y.Q. Chen, Crystallization and pyrolysis of nitric acid pressure leach liquor of limonitic laterite and separation of valuable metals, Sep. Purif. Technol. 301 (2022) 121987. [123] X.J. Hu, B.Z. Ma, F. He, Y.Q. Chen, C.Y. Wang, Ammonia leaching process for selective extraction of nickel and cobalt from polymetallic mixed hydroxide precipitate, J. Environ. Chem. Eng. 10 (6) (2022) 108936. [124] McCarthy F, Brock G. The direct nickel process continued progress on the pathway to commercialisation[C]//ALTA Conference. 2011: 2-11. [125] J.Z. Khoo, N. Haque, G. Woodbridge, R. McDonald, S. Bhattacharya, A life cycle assessment of a new laterite processing technology, J. Clean. Prod. 142 (2017) 1765-1777. [126] McCarthy F, McDonald R, Woodbridge G, et al. Iron hydrolysis in the direct Nickel process[C]//28th International Mineral Processing Congress (IMPC 2016). 2016: 11-15. [127] F. He, B.Z. Ma, C.Y. Wang, Y.A. Zuo, Y.Q. Chen, Dissolution behavior and porous kinetics of limonitic laterite during nitric acid atmospheric leaching, Miner. Eng. 185 (2022) 107671. [128] J. Luo, M.J. Rao, G.H. Li, Q. Zhou, Z.P. Zhu, T. Jiang, X.Y. Guo, Self-driven and efficient leaching of limonitic laterite with phosphoric acid, Miner. Eng. 169 (2021) 106979. [129] R.G. McDonald, B.I. Whittington, Atmospheric acid leaching of nickel laterites review Part I. Sulphuric acid technologies, Hydrometallurgy 91 (1-4) (2008) 35-55. [130] B.Z. Ma, W.J. Yang, Y.L. Pei, C.Y. Wang, B.J. Jin, Effect of activation pretreatment of limonitic laterite ores using sodium fluoride and sulfuric acid on water leaching of nickel and cobalt, Hydrometallurgy 169 (2017) 411-417. [131] N. Safitri, M.Z. Mubarok, I.U. Meidji, J. Hardi, H. Jayadi, Leaching of limonitic nickel from Sorowako with sulfuric acid at atmospheric pressure, J. Phys.: Conf. Ser. 1763 (1) (2021) 012044. [132] V. Miettinen, J. Makinen, E. Kolehmainen, T. Kravtsov, L. Rintala, Iron control in atmospheric acid laterite leaching, Minerals 9 (7) (2019) 404. [133] C. Mystrioti, N. Papassiopi, A. Xenidis, K. Komnitsas, Counter-current leaching of low-grade laterites with hydrochloric acid and proposed purification options of pregnant solution, Minerals 8 (12) (2018) 599. [134] N.M. Rice, A hydrochloric acid process for nickeliferous laterites, Miner. Eng. 88 (2016) 28-52. [135] S. Stankovic, S. Stopic, M. Sokic, B. Markovic, B. Friedrich, Review of the past, present, and future of the hydrometallurgical production of nickel and cobalt from lateritic ores, Metall. Mater. Eng. 26 (2) (2020) 199-208. [136] Harris B, White C. Recent developments in the chloride processing of nickel laterites[C]//Proc. 2nd ALTA Ni-Co-Cu Conf., Perth, Australia. 2011. [137] X.Y. Guo, D. Li, K.H. Park, Q.H. Tian, Z. Wu, Leaching behavior of metals from a limonitic nickel laterite using a sulfation-roasting-leaching process, Hydrometallurgy 99 (3-4) (2009) 144-150. [138] P.P.M. Ribeiro, R. Neumann, I.D. dos Santos, M.C. Rezende, P. Radino-Rouse, A.J.B. Dutra, Nickel carriers in laterite ores and their influence on the mechanism of nickel extraction by sulfation-roasting-leaching process, Miner. Eng. 131 (2019) 90-97. [139] G.H. Li, Q. Zhou, Z.P. Zhu, J. Luo, M.J. Rao, Z.W. Peng, T. Jiang, Selective leaching of nickel and cobalt from limonitic laterite using phosphoric acid: an alternative for value-added processing of laterite, J. Clean. Prod. 189 (2018) 620-626. [140] N. Pandey, S.K. Tripathy, S.K. Patra, G. Jha, Recent progress in hydrometallurgical processing of nickel lateritic ore, Trans. Indian Inst. Met. 76 (1) (2023) 11-30. [141] A. Oxley, M.E. Smith, O. Caceres, Why heap leach nickel laterites? Miner. Eng. 88 (2016) 53-60. [142] Xu C, He Y, Wang X, et al. Development of nickel laterite ore leaching by nitric acid[J]. World Nonferrous Metals, 2021(12): 133-135. https://doi.org/10.3969/j.issn.1002-5065.2021.12.062. [143] McCarthy F, Brock G. Direct nickel test plant program: 2013 in review[C]//Proceedings of the ALTA Nickel/Cobalt/Copper Conference 2011. 2014. [144] Queensland Pacific Metals. TECH Project - Advanced Feasibility Study, 2022, https://qpmetals.com.au/tech-project/advanced-feasibility-study/.(Accessed 15 May 2024). [145] A.B. Botelho Junior, D.B. Dreisinger, D.C.R. Espinosa, A review of nickel, copper, and cobalt recovery by chelating ion exchange resins from mining processes and mining tailings, Min. Metall. Explor. 36 (1) (2019) 199-213. [146] R.R. Moskalyk, A.M. Alfantazi, Nickel laterite processing and electrowinning practice, Miner. Eng. 15 (8) (2002) 593-605. [147] Flett D S. Cobalt-nickel separation in hydrometallurgy: a review[J]. Chemistry for sustainable development, 2004, 12(1): 81-91. [148] J. Kyle, Nickel laterite processing technologies-where to next?, in: ALTA 2010 Nickel/Cobalt/Copper Conference, 24-27 May, Perth, Western Australia, 2010. [149] Z. Zhu, Y. Pranolo, W. Zhang, W. Wang, C.Y. Cheng, Precipitation of impurities from synthetic laterite leach solutions, Hydrometallurgy 104 (1) (2010) 81-85. [150] S. Costa, H. Puga, J. Barbosa, A.M.P. Pinto, The effect of Sc additions on the microstructure and age hardening behaviour of as cast Al-Sc alloys, Mater. Des. 42 (2012) 347-352. [151] Irvine J T S, Politova T, Zakowsky N, et al. Scandia-zirconia electrolytes and electrodes for SOFCS[C]//Fuel Cell Technologies: State and Perspectives: Proceedings of the NATO Advanced Research Workshop on Fuel Cell Technologies: State and Perspectives Kyiv, Ukraine 6-10 June 2004. Springer Netherlands, 2005: 35-47. [152] Sun S, Sun H, Song J, et al. Current status of scandium resources and application research progress of solvent extraction in the process of scandium extraction[J]. The Chinese Journal of Process Engineering, 2020, 20(08): 877-886. https://doi.org/10.12034/j.issn.1009-606X.219336. [153] A.B. Botelho Jr, D.C.R. Espinosa, J. Vaughan, J.A.S. Tenorio, Recovery of scandium from various sources: a critical review of the state of the art and future prospects, Miner. Eng. 172 (2021) 107148. [154] [154] KAYA S, Topkaya Y A, DITTRICH C. Hydrometallurgical extraction of scandium from lateritic nickel ores[C]//Proceedings of the Bauxite Residue Valorisation and Best Practices Conference BR. 2015: 347-354. [155] Z.G. Zhou, B.Z. Ma, C.Y. Wang, Y.Q. Chen, W.J. Zhang, K. Huang, Enrichment of scandium and aluminum from limonitic laterite during the nitric acid pressure leaching process, Hydrometallurgy 208 (2022) 105819. [156] Ferizoglu E, Kaya S, Topkaya Y A. Solvent extraction behaviour of scandium from lateritic nickel-cobalt ores using different organic reagents[J]. Physicochemical Problems of Mineral Processing, 2018, 54(2): 538-545. https://doi.org/10.5277/ppmp1855. [157] W.W. Wang, C.Y. Cheng, Separation and purification of scandium by solvent extraction and related technologies: a review, J. Chem. Technol. Biotechnol. 86 (10) (2011) 1237-1246. [158] Z.G. Zhou, B.Z. Ma, C.Y. Wang, Y.Q. Chen, L. Wang, Recovery of scandium and aluminum from limonitic laterite intermediate product, Miner. Eng. 188 (2022) 107844. [159] Z.G. Zhou, B.Z. Ma, C.Y. Wang, Y.Q. Chen, L. Wang, Separation and recovery of scandium from high pressure sulfuric acid leach liquor of limonitic laterite, Process. Saf. Environ. Prot. 165 (2022) 161-172. [160] S. Kaya, C. Dittrich, S. Stopic, B. Friedrich, Concentration and separation of scandium from Ni laterite ore processing streams, Metals 7 (12) (2017) 557. [161] N. Ricketts, W. Duyvesteyn, Scandium recovery from the nyngan laterite project in NSW[C]//Light Metals 2018. Springer International Publishing, (2018) 1539-1543. [162] M.Y. Liu, J. Chen, D. Zou, Y.F. Yan, D.Q. Li, A novel synergistic extraction system for the recovery of scandium (III) from sulfuric acid medium with mixed Cyanex923 and N1923, Sep. Purif. Technol. 283 (2022) 120223. [163] J.S. Hu, D. Zou, J. Chen, D.Q. Li, A novel synergistic extraction system for the recovery of scandium (III) by Cyanex272 and Cyanex923 in sulfuric acid medium, Sep. Purif. Technol. 233 (2020) 115977. [164] Rojas-Puron A L, Turro-Breffe A. Composicion mineralogica de las colas del proceso Caron en Moa, Holguin, Cuba[J]. Mineria y geologia, 2003, 19(3-4): 8. [165] G. Cabrera, J.M. Gomez, I. Hernandez, O. Coto, D. Cantero, Different strategies for recovering metals from CARON process residue, J. Hazard. Mater. 189 (3) (2011) 836-842. [166] K. Liu, Q.Y. Chen, H.P. Hu, Z.Y. Ding, Z.L. Yin, Characteristics of scales formed from pressure leaching of Yuanjiang laterite, Hydrometallurgy 109 (1-2) (2011) 131-139. [167] N. Faris, A.J. Fischmann, S. Assmann, L.A. Jones, J. Tardio, S. Madapusi, S. Grocott, S. Bhargava, A study into the behaviour of nickel, cobalt and metal impurities during partial neutralisation of synthetic nickel laterite pressure leach solutions and pulps, Hydrometallurgy 202 (2021) 105604. [168] N. Faris, J. White, F. Magazowski, A. Fischmann, L.A. Jones, J. Tardio, S. Madapusi, S. Grocott, S.K. Bhargava, An investigation into potential pathways for nickel and cobalt loss during impurity removal from synthetic nickel laterite pressure acid leach solutions via partial neutralisation, Hydrometallurgy 202 (2021) 105595. [169] N.V. Permatasari, Hadiyanto, B. Warsito, A. Kawigraha, N. Ikhwani, Iron recovery from residue of lateritic nickel leaching industry, E3S Web Conf. 317 (2021) 04033. [170] M.G. Lei, B.Z. Ma, Y.Q. Chen, W. Liu, B. Liu, D.Y. Lv, W.J. Zhang, C.Y. Wang, Effective separation and beneficiation of iron and chromium from laterite sulfuric acid leach residue, ACS Sustainable Chem. Eng. 8 (9) (2020) 3959-3968. [171] Z.H. Cao, B.Z. Ma, J.S. Zhou, L.F. Shi, Y.Q. Chen, C.Y. Wang, Efficient recovery of iron and chromium from laterite residue by non-molten metallization reduction, Powder Technol. 407 (2022) 117618. [172] J.S. Zhou, Z.H. Cao, B.Z. Ma, Y.Q. Chen, C.Y. Wang, Effective separation and recovery of iron and chromium from laterite residue in the presence of calcium chloride, Process. Saf. Environ. Prot. 166 (2022) 638-648. [173] Z.H. Cao, B.Z. Ma, J.S. Zhou, Y.Q. Chen, C.Y. Wang, The study for reduction roasting of laterite residue in the presence of CaF2, Process. Saf. Environ. Prot. 168 (2022) 1-9. [174] Z.H. Cao, B.Z. Ma, Q.K. Jing, P. Xing, B. Liu, C.Y. Wang, Facile and inexpensive preparation method of iron phosphate from laterite residue, Ceram. Int. 46 (8) (2020) 11304-11310. [175] Z.H. Cao, B.Z. Ma, C.Y. Wang, B.D. Shi, Y.Q. Chen, Thermodynamic analysis and application for preparing FePO4 from nitric acid pressure leach laterite residue by selective leaching in phosphoric acid and induced precipitation, Hydrometallurgy 212 (2022) 105896. [176] J.E. Dutrizac, An overview of iron precipitation in hydrometallurgy. Crystallization and Precipitation. Amsterdam: Elsevier, (1987) 259-283. [177] L.J. Li, X.H. Li, Z.X. Wang, H.J. Guo, L. Wu, Y. Hao, J.C. Zheng, Inexpensive synthesis of metal-doped LiFePO4 from laterite lixivium and its electrochemical characterization, J. Alloys Compd. 497 (1-2) (2010) 176-181. [178] J.M. Gao, M. Zhang, F.Q. Cheng, M. Guo, Process development for selective precipitation of valuable metals and simultaneous synthesis of single-phase spinel ferrites from saprolite-limonite laterite leach liquors, Hydrometallurgy 173 (2017) 98-105. [179] D.N. Dissanayake, M.G. Mantilaka, R.T. De Silva, H.A. Pitawala, K.M. Nalin de Silva, G.J. Amaratunga, Cost effective, industrially viable production of Fe2O3 nanoparticles from laterites and its adsorption capability, Mater. Res. Express 6 (10) (2019) 105077. [180] Y.F. Chang, X.J. Zhai, B.C. Li, Y. Fu, Removal of iron from acidic leach liquor of lateritic nickel ore by goethite precipitate, Hydrometallurgy 101 (1-2) (2010) 84-87. [181] H.S. Han, W. Sun, Y.H. Hu, T. Yue, L. Wang, R.Q. Liu, Z.Y. Gao, P. Chen, Induced crystallization of goethite precipitate from nickel sulfate solution by limonite seeding, Hydrometallurgy 174 (2017) 253-257. [182] T. Yue, H.S. Han, W. Sun, Y.H. Hu, P. Chen, R.Q. Liu, Low-pH mediated goethite precipitation and nickel loss in nickel hydrometallurgy, Hydrometallurgy 165 (2016) 238-243. [183] G.K. Das, J. Li, Iron removal as goethite from synthetic laterite leach solutions, ACS Omega 8 (13) (2023) 11931-11940. |
[1] | Zongyu Yao, Qingchao Jiang, Xingsheng Gu. Distributed process monitoring based on Kantorovich distance-multiblock variational autoencoder and Bayesian inference[J]. 中国化学工程学报, 2024, 73(9): 311-323. |
[2] | Yanran Zhu, Yue Zhou, Qian Chen, Rongqiang Fu, Zhaoming Liu, Liang Ge, Tongwen Xu. Waste acid recovery utilizing monovalent cation permselective membranes through selective electrodialysis[J]. 中国化学工程学报, 2024, 71(7): 45-57. |
[3] | Songshan Zhou, Yunhui Han, Rong Huang, Yin Huang, Qingyuan Dong, Haiyin Gang, Jinchuan Qin, Xi Yu, Xiangfei Zeng, Wenxing Cao, Jiqin Wang, Shaoqin Chen, Rong Wang, Mengjun Chen. Making waste profitable: Efficient recovery of metallic iron from jarosite residues[J]. 中国化学工程学报, 2024, 71(7): 66-76. |
[4] | Hai Cao, Haibin Yang, Yanxiong Fang, Yuandi Zeng, Xiaolan Cai, Jingjing Ma. Study on trifluoromethanesulfonic acid-promoted synthesis of daidzein: Process optimization and reaction mechanism[J]. 中国化学工程学报, 2024, 71(7): 132-139. |
[5] | Jiaojiao Luo, Zhehao Jin, Heping Jin, Qian Li, Xu Ji, Yiyang Dai. Causal temporal graph attention network for fault diagnosis of chemical processes[J]. 中国化学工程学报, 2024, 70(6): 20-32. |
[6] | Xiaoming Zhang, Wen Xie, Xiaolei Zhou, Wenjie Zhang, Jiawei Wen, Xin Wang, Guoyong Huang, Shengming Xu. Study on metal recovery process and kinetics of oxidative leaching from spent LiFePO4 Li-batteries[J]. 中国化学工程学报, 2024, 68(4): 94-102. |
[7] | Chao Li, Shizhao Wang, Yunshan Wang, Xuebin An, Gang Yang, Yong Sun. Study on synergistic leaching of potassium and phosphorus from potassium feldspar and solid waste phosphogypsum via coupling reactions[J]. 中国化学工程学报, 2024, 65(1): 117-129. |
[8] | Xi Luo, Xiayuan Feng, Xu Ji, Yagu Dang, Li Zhou, Kexin Bi, Yiyang Dai. Extraction and analysis of risk factors from Chinese chemical accident reports[J]. 中国化学工程学报, 2023, 61(9): 68-81. |
[9] | Jinlong Liu, Chenye Wang, Xingrui Wang, Chen Zhao, Huiquan Li, Ganyu Zhu, Jianbo Zhang. Reconstruction and recovery of anatase TiO2 from spent selective catalytic reduction catalyst by NaOH hydrothermal method[J]. 中国化学工程学报, 2023, 60(8): 53-60. |
[10] | Xinxin Li, Hongwei Shao, Shichao Zhang, Yong Li, Jingjing Gu, Qiang Huang, Jin Ran. Two dimensional MoS2 finding its way towards constructing high-performance alkaline recovery membranes[J]. 中国化学工程学报, 2023, 60(8): 155-164. |
[11] | Alexander Nti Kani, Evans Dovi, Aaron Albert Aryee, Runping Han, Zhaohui Li, Lingbo Qu. Mechanisms and reusability potentials of zirconium-polyaziridine-engineered tiger nut residue towards anionic pollutants[J]. 中国化学工程学报, 2023, 60(8): 275-292. |
[12] | Yong Xu, Qingbai Chen, Yang Gao, Jianyou Wang, Huiqing Fan, Fei Zhao. Performance comparison of lithium fractionation from magnesium via continuous selective nanofiltration/electrodialysis[J]. 中国化学工程学报, 2023, 59(7): 42-50. |
[13] | Runze Chen, Yuran Chen, Xuemin Liang, Yapeng Kong, Yangyang Fan, Quan Liu, Zhenyu Yang, Feiying Tang, Johnny Muya Chabu, Maru Dessie Walle, Liqiang Wang. Oxidative exfoliation of spent cathode carbon: A two-in-one strategy for its decontamination and high-valued application[J]. 中国化学工程学报, 2023, 59(7): 262-269. |
[14] | Jiangshan Qu, Jianbo Zhang, Huiquan Li, Shaopeng Li, Da Shi, Ruiqi Chang, Wenfen Wu, Ganyu Zhu, Chennian Yang, Chenye Wang. Occurrence, leaching behavior, and detoxification of heavy metal Cr in coal gasification slag[J]. 中国化学工程学报, 2023, 58(6): 11-19. |
[15] | Chaobo Zhang, Xiaoyong Yang, Jian Dai, Wenxia Liu, Hang Yang, Zhishan Bai. Efficient extraction of phenol from wastewater by ionic micro-emulsion method: Anionic and cationic[J]. 中国化学工程学报, 2023, 58(6): 137-145. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||