[1] W.L. Feng, Y. Yin, M. de Lourdes Mendoza, L.D. Wang, P. Chen, Y.D. Liu, L.K. Cai, L.H. Zhang, Oil recovery from waste cutting fluid via the combination of suspension crystallization and freeze-thaw processes, J. Clean. Prod. 172 (2018) 481-487. [2] V.V. Kuprygin, M.V. Zorin, A.Y. Yeremin, V. Zagaynov, Utilization of emulsol wastes of roll-mills of coke plants, Ural Federal University, 2015. https://elibrary.ru/item.asp?id=29234746 (accessed May 6, 2020). [3] T. Krebs, M.R. Akdim, Emulsion separation, Surf. Process. Transp. Storage Vol. 4. (2023) 79-152. https://doi.org/10.1016/B978-0-12-823891-2.00003-X. [4] O. Soloveva, S. Solovev, A. Khaibullina, R. Yafizov, Method of the wastewater treatment in transport using a porous material, Transp. Res. Procedia 54 (2021) 712-718. [5] I.S. Khusnutdinov, A.G. Safiulina, R.R. Zabbarov, O.A. Dubovikov, S.I. Khusnutdinov, N.K. Khaldarov, Influence of physicochemical properties of highly organized oil disperse systems on efficiency of thermomechanical dehydration, Chem. Technol. Fuels Oils 52 (6) (2017) 779-784. [6] S.I. Khusnutdinov, J. Schenk, I.S. Khusnutdinov, A.F. Safiulina, V.Y. Bazhin, O.A. Dubovikov, Methods and technologies for the processing of water-hydrocarbon emulsions and technogenic raw materials of metallurgical and petrochemical enterprises: A review. Topical Issues of Rational Use of Natural Resources 2019. CRC Press, (2019), pp 25-532. [7] A.G. Safiulina, R.R. Zabbarov, S.I. Khusnutdinov, A.A. Alekseeva, I.S. Khusnutdinov, S.M. Petrov, Thermomechanical dehydration of highly-stable dispersions of liquid pyrolysis products, Chem. Technol. Fuels Oils 54 (3) (2018) 265-270. [8] I.S. Khusnutdinov, A.G. Safiulina, R.R. Zabbarov, A.A. Alekseeva, O.E. Alawode, I.N. Goncharova, Prediction of the removal of aqueous phase during boiling of highly stable water-hydrocarbon emulsions, Petrol. Sci. Technol. 40 (21) (2022) 2659-2668. [9] I.M. Zaidullin, A.G. Safiulina, S.I. Khusnutdinov, S.M. Petrov, I.S. Khusnutdinov, A.A. Alekseeva, N.Y. Bashkirtseval, Characteristics of distillation residues from liquid pyrolysis products, Chem. Technol. Fuels Oils 54 (4) (2018) 425-429. [10] S.A. Margolis, P.H. Huang, N.G. Hadaruga, D.I. Hadaruga, Water Determination, Encycl. Anal. Sci. (2019) 382-390. https://doi.org/10.1016/B978-0-12-409547-2.14505-6. [11] R. Pal, Techniques for measuring the composition (oil and water content) of emulsions-a state of the art review, Colloids Surf. A Physicochem. Eng. Aspects 84 (2-3) (1994) 141-193. [12] Y. Yang, W. Ha, C. Zhang, M. Liu, X.K. Zhang, D. Wang, Measurement of high-water-content oil-water two-phase flow by electromagnetic flowmeter and differential pressure based on phase-isolation, Flow Meas. Instrum. 84 (2022) 102142. [13] C.J. Zhao, G.Z. Wu, Y. Li, Measurement of water content of oil-water two-phase flows using dual-frequency microwave method in combination with deep neural network, Measurement 131 (2019) 92-99. [14] J. Zhu, G. Wang, Measurement of water content in heavy oil with cavity resonator, Results Phys. 18 (2020) 103192. [15] S.H. Saleh, C.P. Tripp, A new approach for measuring water concentration in oil using copper sulfate powder and infrared spectroscopy, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 262 (2021) 120107. https://doi.org/10.1016/J.SAA.2021.120107. [16] T.X. Yin, S.Z. Wang, W.G. Shen, Volumetric studies on binary mixtures of surfactants N, N’-bis(dimethyldodecyl)-1, 2-ethanediammonium dibromide and 1-dodecyl-3-methylimidazolium bromide in aqueous solutions, J. Chem. Thermodyn. 83 (2015) 97-103. [17] W. Larsson, J. Jalbert, R. Gilbert, A. Cedergren, Efficiency of methods for Karl Fischer determination of water in oils based on oven evaporation and azeotropic distillation, Anal. Chem. 75 (6) (2003) 1227-1232. [18] B.T.P.R. AB Kopyl’tsova, Hygrometry of oil and products. Part 2. Coulometric Karl Fischer method: Problems of application, Prod Qual Contr. 2014 (2014) 49-54. [19] Z.L. Zhen, H.F. Wang, Y.M. Yue, D.M. Li, X.P. Song, J. Li, Determination of water content of crude oil by azeotropic distillation Karl Fischer coulometric titration, Anal. Bioanal. Chem. 412 (19) (2020) 4639-4645. [20] P.G. Ivanova, Z.V. Aneva, Assessment and assurance of quality in water measurement by coulometric Karl Fischer titration of petroleum products, Accredit. Qual. Assur. 10 (10) (2006) 543-549. [21] S.A. Margolis, K. Vaishnav, J.R. Sieber, Measurement of water by oven evaporation using a novel oven design. 1. Water in water-saturated 1-octanol, coal, cement, and refined oils, Anal. Bioanal. Chem. 380 (3) (2004) 556-562. [22] L.A. Frink, D.W. Armstrong, Determination of trace water content in petroleum and petroleum products, Anal. Chem. 88 (16) (2016) 8194-8201. [23] S.A. Margolis, C. Hagwood, The determination of water in crude oil and transformer oil reference materials, Anal. Bioanal. Chem. 376 (2) (2003) 260-269. [24] S.A. Margolis, J. Paulsen, E. Park, A coulometric method for determining substances that interfere with the measurement of water in oils and other chemicals by the Karl Fischer method, Anal. Bioanal. Chem. 374 (7-8) (2002) 1274-1281. [25] D. Senatra, Dielectric analysis and Differential Scanning Calorimetry of water-in-oil microemulsions, Adv. Colloid Interface Sci. 123 (2006) 415-424. [26] R.K. Khankari, D. Law, D.J.W. Grant, Determination of water content in pharmaceutical hydrates by differential scanning calorimetry, Int. J. Pharm. 82 (1-2) (1992) 117-127. [27] L. Jilkova, T. Hlincik, K.Ciahotny, Determination of water content in pyrolytic tars using coulometric karl-fisher titration, Acta Polytech. 57 (1) (2017) 8-13. [28] M. Jendrlin, A. Radu, V. Zholobenko, D. Kirsanov, Performance modelling of zeolite-based potentiometric sensors, Sens. Actuat. B Chem. 356 (2022) 131343. [29] N. Dantan, W. Frenzel, S. Kuppers, Determination of water traces in various organic solvents using Karl Fischer method under FIA conditions, Talanta 52 (1) (2000) 101-109. [30] S. Inagaki, N. Morii, M. Numata, Development of a reliable method to determine water content by headspace gas chromatography/mass spectrometry with the standard addition technique, Anal. Methods 7 (11) (2015) 4816-4820. [31] S. Veillet, V. Tomao, F. Visinoni, F. Chemat, New and rapid analytical procedure for water content determination: Microwave accelerated Dean-stark, Anal. Chim. Acta 632 (2) (2009) 203-207. [32] N. Dittes, Water in Grease Condition Monitoring Literature Review, (2013). https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-22069 (accessed August 10, 2024). [33] M.V. Kurlin, A.A. Spirin, Y.M. Frankfurt, Dielectric strength and electric conductivity of liquid dielectrics containing water, Chem. Technol. Fuels Oils 2 (12) (1966) 868-871. [34] S.R. Arsad, P.J. Ker, M.Z. Jamaludin, P.Y. Choong, H.J. Lee, V.A. Thiviyanathan, Y.Z. Yang Ghazali, Water content in transformer insulation system: A review on the detection and quantification methods, Energies 16 (4) (2023) 1920. [35] M.K. Moro, F.D. dos Santos, G.S. Folli, W. Romao, P.R. Filgueiras, A review of chemometrics models to predict crude oil properties from nuclear magnetic resonance and infrared spectroscopy, Fuel 303 (2021) 121283. [36] P.R. Filgueiras, C.M.S. Sad, A.R. Loureiro, M.F.P. Santos, E.V.R. Castro, J.C.M. Dias, R.J. Poppi, Determination of API gravity, kinematic viscosity and water content in petroleum by ATR-FTIR spectroscopy and multivariate calibration, Fuel 116 (2014) 123-130. [37] M. Bampi, A. de P. Scheer, F. de Castilhos, Application of near infrared spectroscopy to predict the average droplet size and water content in biodiesel emulsions, Fuel 113 (2013) 546-552. [38] G.R. Borges, G.B. Farias, T.M. Braz, L.M. Santos, M.J. Amaral, M. Fortuny, E. Franceschi, C. Dariva, A.F. Santos, Use of near infrared for evaluation of droplet size distribution and water content in water-in-crude oil emulsions in pressurized pipeline, Fuel 147 (2015) 43-52. [39] J.R. Delfino, T.C. Pereira, H.D. Costa Viegas, E.P. Marques, A.A. Pupim Ferreira, L. Zhang, J. Zhang, A.L. Brandes Marques, A simple and fast method to determine water content in biodiesel by electrochemical impedance spectroscopy, Talanta 179 (2018) 753-759. [40] Online method for measuring oil density in oil containing sewage and device thereof, (2005). [41] H.B. Qi, L. Yang, X.H. Hu, D. Li, Q.S. Wang, G.Z. Wu, Optical properties of oilfield wastewater and its application in measuring oil content, Appl. Spectrosc. 72 (8) (2018) 1252-1257. [42] E. Kang, H.R. Park, J. Yoon, H.Y. Yu, S.K. Chang, B. Kim, K. Choi, S. Ahn, A simple method to determine the water content in organic solvents using the 1H NMR chemical shifts differences between water and solvent, Microchem. J. 138 (2018) 395-400. [43] M.Y. Qing, H.Q. Liang, J.J. Zhang, H.L. Zhan, The mechanism of detecting water content in oil-water emulsions using impedance spectroscopy, J. Petrol. Sci. Eng. 188 (2020) 106863. [44] K. Mirotchnik, K. Allsopp, A. Kantzas, Determination of Oil and Water Compositions of Oil/Water Emulsions Using Low Field NMR RelaxometryCanadian International Petroleum Conference. Calgary, Alberta. Petroleum Society of Canada, (2000). [45] W.K. O’Keefe, F.T.T. Ng, G.L. Rempel, Validation of a gas chromatography/thermal conductivity detection method for the determination of the water content of oxygenated solvents, J. Chromatogr. A 1182 (1) (2008) 113-118. |