[1] S. Wang, S. Wang, X.P. Zong, S.D. Wang, X.L. Dong, CO oxidation with Pt catalysts supported on different supports: a comparison of their sulfur tolerance properties, Appl. Catal. A Gen. 654 (2023) 119083. [2] C. Yu, C.Y. Yang, R.C. Wang, G.Y. Dai, H. Chen, Z.W. Huang, H.W. Zhao, Z.M. Zhou, X.M. Wu, G.H. Jing, Mechanistic insight into the catalytic CO oxidation and SO2 resistance over Mo-decorated Pt/TiO2 catalyst: The essential role of Mo, Chem. Eng. J. 486 (2024) 150319. [3] G. Kumar, S. Sampath, V. Jeena, R. Anjali, Carbon monoxide pollution levels at environmentally different sites, Journal of Indian Geophysical Union,12(1)(2008)31-40. [4] C.L. Feng, X.L. Liu, T.Y. Zhu, Y.T. Hu, M.K. Tian, Catalytic oxidation of CO over Pt/TiO2 with low Pt loading: the effect of H2O and SO2, Appl. Catal. A Gen. 622 (2021) 118218. [5] H.H. Yi, T.T. Zhong, J. Liu, Q.J. Yu, S.Z. Zhao, F.Y. Gao, Y.S. Zhou, S. Wang, X.L. Tang, Emissions of air pollutants from sintering flue gas in the Beijing-Tianjin-Hebei area and proposed reduction measures, J. Clean. Prod. 304 (2021) 126958. [6] L. Wang, Y.R. Bai, H.Q. Wang, Z.B. Wu, Simple solid mixed Pt/TiO2-ZrO2 catalyst for CO oxidation with excellent sulfur and water resistance at relatively low temperature, Fuel 371 (2024) 131904. [7] C.L. Feng, X.L. Liu, T.Y. Zhu, M.K. Tian, Catalytic oxidation of CO on noble metal-based catalysts, Environ. Sci. Pollut. Res. 28 (20) (2021) 24847-24871. [8] S. Dey, G.C. Dhal, D. Mohan, R. Prasad, Advances in transition metal oxide catalysts for carbon monoxide oxidation: a review, Adv. Compos. Hybrid Mater. 2 (4) (2019) 626-656. [9] M.Y. Smirnov, A.V. Kalinkin, A.V. Pashis, I.P. Prosvirin, V.I. Bukhtiyarov, Interaction of SO2 with Pt model supported catalysts studied by XPS, J. Phys. Chem. C 118 (38) (2014) 22120-22135. [10] K.L. He, In situ DRIFTS and TPD studies on surface properties affecting SO2- resistance of Pt/TiO2 catalyst in low-temperature CO oxidation, Surf. Sci. 734 (2023) 122315. [11] H.T. Zhu, W.G. Qiu, R. Wu, K. Li, H. He, Spatial confinement: an effective strategy to improve H2O and SO2 resistance of the expandable graphite-modified TiO2-supported Pt nanocatalysts for CO oxidation, J. Environ. Sci. 148 (2025) 57-68. [12] J.J. Chen, S.C. Xiong, H.Y. Liu, J.Q. Shi, J.X. Mi, H. Liu, Z.J. Gong, L. Oliviero, F. Mauge, J.H. Li, Reverse oxygen spillover triggered by CO adsorption on Sn-doped Pt/TiO2 for low-temperature CO oxidation, Nat. Commun. 14 (1) (2023) 3477. [13] A.(. Getsoian, J.R. Theis, W.A. Paxton, M.J. Lance, C.K. Lambert, Remarkable improvement in low temperature performance of model three-way catalysts through solution atomic layer deposition, Nat. Catal. 2 (2019) 614-622. [14] J. Yuan, K. Yang, J.Q. Shi, J.X. Mi, K. Zheng, J.J. Chen, J.H. Li, Structure-Directing role of support on toluene catalytic combustion over Pt/TiO2 catalysts, Fuel 380 (2025) 133126. [15] X.B. Zhang, Z.M. Li, W. Pei, G. Li, W. Liu, P.F. Du, Z. Wang, Z.X. Qin, H.F. Qi, X.Y. Liu, S. Zhou, J.J. Zhao, B. Yang, W.J. Shen, Crystal-phase-mediated restructuring of Pt on TiO2 with tunable reactivity: redispersion versus reshaping, ACS Catal. 12 (6) (2022) 3634-3643. [16] K.Y. Ho, K.L. Yeung, Properties of TiO2 support and the performance of Au/TiO2 Catalyst for CO oxidation reaction, Gold Bull. 40 (1) (2007) 15-30. [17] A.A. Shutilov, G.A. Zenkovets, Study of the formation features of the active state in supported Pt/TiO2 CO oxidation catalysts doped with alumina, Chem. Sustain. Dev. 28(1) (2020)77-85. [18] G.S. Lane, E.E. Wolf, Characterization and Fourier transform infrared studies of the effects of TiO2 crystal phases during CO oxidation on Pt TiO2 catalysts, J. Catal. 105 (2) (1987) 386-404. [19] H. Kim, J. Kim, J.H. Kwak, Origin of higher CO oxidation activity of Pt/rutile than that of Pt/anatase, J. Phys. Chem. C 127 (15) (2023) 7142-7150. [20] Y. Zhou, D.E. Doronkin, M.L. Chen, S.Q. Wei, J.D. Grunwaldt, Interplay of Pt and crystal facets of TiO2: co oxidation activity and operando XAS/DRIFTS studies, ACS Catal. 6 (11) (2016) 7799-7809. [21] K. Taira, K.J. Nakao, K. Suzuki, H. Einaga, SOx tolerant Pt/TiO2 catalysts for CO oxidation and the effect of TiO2 supports on catalytic activity, Environ. Sci. Technol. 50 (17) (2016) 9773-9780. [22] J.H. Liu, T. Ding, H. Zhang, G.C. Li, J.M. Cai, D.Y. Zhao, Y. Tian, H. Xian, X.Q. Bai, X.G. Li, Engineering surface defects and metal-support interactions on Pt/TiO2(B) nanobelts to boost the catalytic oxidation of CO, Catal. Sci. Technol. 8 (19) (2018) 4934-4944. [23] C.H. Jung, J. Yun, K. Qadir, B. Naik, J.Y. Yun, J.Y. Park, Catalytic activity of Pt/SiO2 nanocatalysts synthesized via ultrasonic spray pyrolysis process under CO oxidation, Appl. Catal. B Environ. 154 (2014) 171-176. [24] Z. Mohamed, V.D.B.C. Dasireddy, S. Singh, H.B. Friedrich, Comparative studies for CO oxidation and hydrogenation over supported Pt catalysts prepared by different synthesis methods, Renew. Energy 148 (2020) 1041-1053. [25] S.B. Rasmussen, A. Kustov, J. Skotte, B. Siret, F. Tabaries, R. Fehrmann, Characterization and regeneration of Pt-catalysts deactivated in municipal waste flue gas, Appl. Catal. B Environ. 69 (1-2) (2006) 10-16. [26] W.Y. Wang, D.D. Li, H.B. Yu, C.F. Liu, C. Tang, J. Chen, J.Q. Lu, M.F. Luo, Insights into different reaction behaviors of propane and CO oxidation over Pt/CeO2 and Pt/Nb2O5: the crucial roles of support properties, J. Phys. Chem. C 125 (35) (2021) 19301-19310. [27] K. Chun, J. Kim, D. Rie, Thermal characteristics of expandable graphite-wood particle composites, Materials 13 (12) (2020) 2732. [28] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem. 87 (9-10) (2015) 1051-1069. [29] Y.C. Yao, S.L. Hu, W.X. Chen, Z.Q. Huang, W.C. Wei, T. Yao, R.R. Liu, K.T. Zang, X.Q. Wang, G. Wu, W.J. Yuan, T.W. Yuan, B.Q. Zhu, W. Liu, Z.J. Li, D.S. He, Z.G. Xue, Y. Wang, X.S. Zheng, J.C. Dong, C.R. Chang, Y.X. Chen, X. Hong, J. Luo, S.Q. Wei, W.X. Li, P. Strasser, Y.E. Wu, Y.D. Li, Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis, Nat. Catal. 2 (4) (2019) 304-313. [30] N. Yamaguchi, N. Kamiuchi, H. Muroyama, T. Matsui, K. Eguchi, Effect of reduction treatment on CO oxidation over Pt/SnO2 catalyst, Catal. Today 164 (1) (2011) 169-175. [31] T.Y. Xu, X.L. Liu, T.Y. Zhu, C.L. Feng, Y.T. Hu, M.K. Tian, New insights into the influence mechanism of H2O and SO2 on Pt-W/Ti catalysts for CO oxidation, Catal. Sci. Technol. 12 (5) (2022) 1574-1585. [32] N. Li, Q.Y. Chen, L.F. Luo, W.X. Huang, M.F. Luo, G.S. Hu, J.Q. Lu, Kinetic study and the effect of particle size on low temperature CO oxidation over Pt/TiO2 catalysts, Appl. Catal. B Environ. 142 (2013) 523-532. [33] I.H. Choi, J.S. Lee, C.U. Kim, T.W. Kim, K.Y. Lee, K.R. Hwang, Production of bio-jet fuel range alkanes from catalytic deoxygenation of Jatropha fatty acids on a WOx/Pt/TiO2 catalyst, Fuel 215 (2018) 675-685. [34] J.Y. Cai, Z.H. Yu, J. Li, Effect of preparation methods on the performance of Pt/TiO2 catalysts for the catalytic oxidation of carbon monoxide in simulated sintering flue gas, Catalysts 11 (7) (2021) 804. [35] P. Ochal, J.L. Gomez de la Fuente, M. Tsypkin, F. Seland, S. Sunde, N. Muthuswamy, M. Roenning, D. Chen, S. Garcia, S. Alayoglu, B. Eichhorn, CO stripping as an electrochemical tool for characterization of Ru@Pt core-shell catalysts, J. Electroanal. Chem. 655 (2) (2011) 140-146. [36] L.C. Liu, G. Samjeske, S.I. Nagamatsu, O. Sekizawa, K. Nagasawa, S. Takao, Y. Imaizumi, T. Yamamoto, T. Uruga, Y. Iwasawa, Enhanced oxygen reduction reaction activity and characterization of Pt-Pd/C bimetallic fuel cell catalysts with Pt-enriched surfaces in acid media, J. Phys. Chem. C 116 (44) (2012) 23453-23464. [37] M. Macino, A.J. Barnes, S.M. Althahban, R.Y. Qu, E.K. Gibson, D.J. Morgan, S.J. Freakley, N. Dimitratos, C.J. Kiely, X. Gao, A.M. Beale, D. Bethell, Q. He, M. Sankar, G.J. Hutchings, Tuning of catalytic sites in Pt/TiO2 catalysts for the chemoselective hydrogenation of 3-nitrostyrene, Nat. Catal. 2 (2019) 873-881. [38] H. Arandiyan, H.X. Dai, K.M. Ji, H.Y. Sun, J.H. Li, Pt nanoparticles embedded in colloidal crystal template derived 3D ordered macroporous Ce0.6Zr0.3Y0.1O2: highly efficient catalysts for methane combustion, ACS Catal. 5 (3) (2015) 1781-1793. [39] A. Posada-Borbon, N. Bosio, H. Gronbeck, On the signatures of oxygen vacancies in O1s core level shifts, Surf. Sci. 705 (2021) 121761. [40] P. Krishnan, M.H. Liu, P.A. Itty, Z. Liu, V. Rheinheimer, M.H. Zhang, P.J.M. Monteiro, L.E. Yu, Characterization of photocatalytic TiO2 powder under varied environments using near ambient pressure X-ray photoelectron spectroscopy, Sci. Rep. 7 (2017) 43298. [41] A. Karami, V. Salehi, The influence of chromium substitution on an iron-titanium catalyst used in the selective catalytic reduction of NO, J. Catal. 292 (2012) 32-43. [42] S. Praserthdam, M. Rittiruam, K. Maungthong, T. Saelee, S. Somdee, P. Praserthdam, Performance controlled via surface oxygen-vacancy in Ti-based oxide catalyst during methyl oleate epoxidation, Sci. Rep. 10 (1) (2020) 18952. [43] L. Zhang, L.L. Li, Y. Cao, X.J. Yao, C.Y. Ge, F. Gao, Y. Deng, C.J. Tang, L. Dong, Getting insight into the influence of SO2 on TiO2/CeO2 for the selective catalytic reduction of NO by NH3, Appl. Catal. B Environ. 165 (2015) 589-598. [44] J.Y. Zhang, J.D. Chen, Z.L. Li, H.L. Weng, Y. Xie, J.J. Wen, W.B. Duan, Q.L. Zhang, J.J. Chen, P. Ning, CO oxidation over PdOσ/Fe1-xWxOy catalysts and their SO2 resistance at relatively low temperature, Fuel 350 (2023) 128802. [45] K.W. Ni, Y.W. Peng, G.Y. Dai, H.W. Zhao, Z.W. Huang, X.M. Wu, G.H. Jing, W. Feng, Y. Yuan, Ceria accelerates ammonium bisulfate decomposition for improved SO2 resistance on a V2O5-WO3/TiO2 catalyst in low-temperature NH3-SCR, J. Taiwan Inst. Chem. Eng. 140 (2022) 104555. [46] Z. Wang, K.Y. Xie, J. Zheng, S.F. Zuo, Studies of sulfur poisoning process via ammonium sulfate on MnO2/γ-Al2O3 catalyst for catalytic combustion of toluene, Appl. Catal. B Environ. 298 (2021) 120595. [47] T. Zhang, W.G. Qiu, H.T. Zhu, X.L. Ding, R. Wu, H. He, Promotion effect of the keggin structure on the sulfur and water resistance of Pt/CeTi catalysts for CO oxidation, Catalysts 12 (1) (2022) 4. [48] R.B. Jin, Y. Liu, Y. Wang, W.L. Cen, Z.B. Wu, H.Q. Wang, X.L. Weng, The role of cerium in the improved SO2 tolerance for NO reduction with NH3 over Mn-Ce/TiO2 catalyst at low temperature, Appl. Catal. B Environ. 148 (2014) 582-588. [49] F.Y. Gao, X.L. Tang, H.H. Yi, J.Y. Li, S.Z. Zhao, J.G. Wang, C. Chu, C.L. Li, Promotional mechanisms of activity and SO2 tolerance of Co- or Ni-doped MnOx-CeO2 catalysts for SCR of NOx with NH3 at low temperature, Chem. Eng. J. 317 (2017) 20-31. [50] J.Y. Zhang, M. Shu, Y.X. Niu, L. Yi, H.H. Yi, Y.S. Zhou, S.Z. Zhao, X.L. Tang, F.Y. Gao, Advances in CO catalytic oxidation on typical noble metal catalysts: Mechanism, performance and optimization, Chem. Eng. J. 495 (2024) 153523. [51] H. Ren, M.P. Humbert, C.A. Menning, J.G. Chen, Y.Y. Shu, U.G. Singh, W.C. Cheng, Inhibition of coking and CO poisoning of Pt catalysts by the formation of Au/Pt bimetallic surfaces, Appl. Catal. A Gen. 375 (2) (2010) 303-309. |