[1] B. Dziejarski, R. Krzyzynska, K. Andersson, Current status of carbon capture, utilization, and storage technologies in the global economy: A survey of technical assessment, Fuel 342 (2023) 127776. [2] G.D. Patron, L. Ricardez-Sandoval, An integrated real-time optimization, control, and estimation scheme for post-combustion CO2 capture, Appl. Energ. 308 (2022) 118302. [3] X. Tan, H. Li, J. Guo, B. Gu, Y. Zeng, Energy-saving and emission-reduction technology selection and CO2 emission reduction potential of China’s iron and steel industry under energy substitution policy, J. Clean. Prod. 222 (2019) 823-834. [4] A. Abotaleb, I. Gladich, A. Alkhateeb, N. Mardini, Y. Bicer, A. Sinopoli, Chemical and physical systems for sour gas removal: An overview from reaction mechanisms to industrial implications, J. Nat. Gas Sci. Eng. 106 (2022) 104755. [5] D. Ao, G. Ma, C. Zang, Y. Qin, Y. Qi, W. Wan, A numerical study on removal of CO2 by 2-(tert-butylamino) ethanol in a hollow fiber membrane contactor, Ind. Eng. Chem. Res. 61 (10) (2022) 3685-3693. [6] Y. Ji, M. Zhang, K. Guan, J. Zhao, G. Liu, W. Jin, High-performance CO2 capture through polymer-based ultrathin membranes, Adv. Funct. Mater. 29 (33) (2019) 1900735. [7] R. Valappil, N. Ghasem, M. Al-Marzouqi, Current and future trends in polymer membrane-based gas separation technology: A comprehensive review, J. Ind. Eng. Chem. 98 (2021) 103-129. [8] S. Mamah, P. Goh, A. Ismail, B. Ng, M. Abdullah, N. Ahmad, A. Tamidi, Advancement in modification of polyvinylindene flouride hollow fiber membrane contactors for CO2 capture, Emergent Materials (2025) 1-25. [9] Y. Xu, K. Goh, R. Wang, T.H. Bae, A review on polymer-based membranes for gas-liquid membrane contacting processes: Current challenges and future direction, Sep. Purif. Technol. 229 (2019) 115791. [10] J. Xu, Z. Wang, Z. Qiao, H. Wu, S. Dong, S. Zhao, J. Wang, Post-combustion CO2 capture with membrane process: Practical membrane performance and appropriate pressure, J. Membr. Sci. 581 (2019) 195-213. [11] C.A. Scholes, S.E. Kentish, A. Qader, Membrane gas-solvent contactor pilot plant trials for post-combustion CO2 capture, Sep. Purif. Technol. 237 (2020) 116470. [12] N. Ghasem, Chemical absorption of CO2 enhanced by nanoparticles using a membrane contactor: modeling and simulation, Membranes 9 (11) (2019) 150. [13] A.T. Nakhjiri, A. Heydarinasab, O. Bakhtiari, T. Mohammadi, Numerical simulation of CO2/H2S simultaneous removal from natural gas using potassium carbonate aqueous solution in hollow fiber membrane contactor, J. Environ. Chem. Eng. 8 (5) (2020) 104130. [14] J.M. Vadillo, D. Hospital-Benito, C. Moya, L. Gomez-Coma, J. Palomar, A. Garea, A. Irabien, Modelling and simulation of hollow fiber membrane vacuum regeneration for CO2 desorption processes using ionic liquids, Sep. Purif. Technol. 277 (2021) 119465. [15] R. Ramezani, L. Di Felice, F. Gallucci, A review on hollow fiber membrane contactors for carbon capture: Recent advances and future challenges, Processes 10 (10) (2022) 2103. [16] S. Boributh, W. Rongwong, S. Assabumrungrat, N. Laosiripojana, R. Jiraratananon, Mathematical modeling and cascade design of hollow fiber membrane contactor for CO2 absorption by monoethanolamine, J. Membr. Sci. 401 (2012) 175-189. [17] A. Park, Y.M. Kim, J.F. Kim, P.S. Lee, Y.H. Cho, H.S. Park, Y.I. Park, Biogas upgrading using membrane contactor process: Pressure-cascaded stripping configuration, Sep. Purif. Technol. 183 (2017) 358-365. [18] P. Jin, C. Huang, Y. Shen, X. Zhan, X. Hu, L. Wang, L. Wang, Simultaneous separation of H2S and CO2 from biogas by gas-liquid membrane contactor using single and mixed absorbents, Energy Fuels 31 (10) (2017) 11117-11126. [19] S. Aghajanian, V. Ruuskanen, H. Nieminen, A. Laari, M. Honkanen, T. Koiranen, Real-time monitoring and insights into process control of micron-sized calcium carbonate crystallization by an in-line digital microscope camera, Chem. Eng. Res. Des. 177 (2022) 778-788. [20] O. Nir, Y. Oren, M.W. Atsbha, A. Chandra, Y. Geller, M. Chaudhary, R. Zevenhoven, Reactive transport in membrane separation modeling: A perspective, Chem. Eng. Res. Des. 188 (2022) 342-353. [21] Z. Sattari, H. Ahmadian Behrooz, A control perspective on hybrid membrane/distillation propane/propylene separation process, Chem. Prod. Process Model 19 (6) (2024), 989-1012. [22] J.A. Romero-Bustamante, J.G. Moguel-Castaneda, H. Puebla, E. Hernandez-Martinez, Robust cascade control for chemical reactors: An approach based on modelling error compensation, Int. J. Chem. React. Eng. 15 (6) (2017) 20170082. [23] M. Rodriguez-Jara, A. Velasco-Perez, J. Vian, S.E. Vigueras-Carmona, H. Puebla, Robust control based on modeling error compensation of microalgae anaerobic digestion, Fermentation 9 (1) (2023) 34. [24] G.D. Patron, L. Ricardez-Sandoval, A robust nonlinear model predictive controller for a post-combustion CO2 capture absorber unit, Fuel 265 (2020) 116932. [25] J.A. Romero-Bustamante, B.M. Zurita-Herrera, M.A. Gutierrez-Limon, E. Hernandez-Martinez, Robust model-based control of a packed absorption column for the natural gas sweetening process, Int. J. Chem. React. Eng. 21 (4) (2023) 461-471. [26] J.M. Vadillo, L. Gomez-Coma, A. Garea, A. Irabien, Hollow fiber membrane contactors in CO2 desorption: A review, Energy Fuels, 35 (1) (2020) 111-136. [27] R. Naim, G.P. Sean, Z. Nasir, N.M. Mokhtar, N.A.S. Muhammad, Recent progress and challenges in hollow fiber membranes for wastewater treatment and resource recovery, Membranes 11 (11) (2021) 839. [28] S.Y. Markova, M. Pelzer, M.G. Shalygin, T. Vad, T. Gries, V.V. Teplyakov, Gas separating hollow fibres from poly(4-methyl-1-pentene): A new development, Sep. Purif. Technol. 278 (2021) 119534. [29] Q. Sohaib, A. Muhammad, M. Younas, M. Rezakazemi, S. Druon-Bocquet, J. Sanchez-Marcano, Rigorous non-isothermal modeling approach for mass and energy transport during CO2 absorption into aqueous solution of amino acid ionic liquids in hollow fiber membrane contactors, Sep. Purif. Technol. 254 (2021) 117644. [30] E.C. Mora, A.G. de Oliveira Paranhos, S.F. de Aquino, C.A. de Lemos Chernicharo, Use of hollow fibre membrane contactors to remove dissolved gases from effluents of UASB reactors treating sewage after its conditioning with dynamic membrane filtration, J. Water Proc. Eng. 53 (2023) 103593. [31] S.Z. Islam, M. Arifuzzaman, G. Rother, V. Bocharova, R.L. Sacci, J. Jakowski, D.S. Sholl, A Membrane contactor enabling energy-efficient CO2 capture from point sources with deep eutectic solvents, Ind. Eng. Chem. Res. 62 (10) (2023) 4455-4465. [32] D. Hidalgo, S. Sanz-Bedate, J.M. Martin-Marroquin, J. Castro, G. Antolin, Selective separation of CH4 and CO2 using membrane contactors, Renewable Energy 150 (2020) 935-942. [33] A. Morisato, E. Mahley, Hydrogen sulfide permeation and hydrocarbon separation properties in cellulose triacetate hollow fiber membrane for high hydrogen sulfide contained natural gas sweetening applications, J. Membr. Sci. 681 (2023) 121734. [34] R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena (second ed.), John Wiley & Sons, New York, 2001. [35] R. Faiz, K. Li, M. Al-Marzouqi, H2S absorption at high pressure using hollow fibre membrane contactors, Chem. Eng. Process.: Process Intensif. 83 (2014) 33-42. [36] Z. Zhang, Y. Yan, L. Zhang, S. Ju, Numerical simulation and analysis of CO2 removal in a polypropylene hollow fiber membrane contactor, Int. J. Chem. Eng. (2014) 56-62. [37] M. Saidi, Process assessment and sensitivity analysis of CO2 capture by aqueous methyldiethanolamine+ piperazine blended solutions using membrane contactor: Model development of kinetics and mass transfer rate, Sep. Purif. Technol. 204 (2018) 185-195. [38] M.H. Al-Marzouqi, M.H. El-Naas, S.A. Marzouk, M.A. Al-Zarooni, N. Abdullatif, R. Faiz, Modeling of CO2 absorption in membrane contactors, Sep. Purif. Technol. 59 (3) (2008) 286-293. [39] S.M.R. Razavi, S. Shirazian, M. Nazemian, Numerical simulation of CO2 separation from gas mixtures in membrane modules: Effect of chemical absorbent, Arab. J. Chem. 9 (1) (2016) 62-71. [40] Z. Dai, M. Usman, M. Hillestad, L. Deng, Modelling of a tubular membrane contactor for pre-combustion CO2 capture using ionic liquids: Influence of the membrane configuration, absorbent properties and operation parameters, Green Energy Environ. 1 (3) (2016) 266-275. [41] G.F. Versteeg, W.P. Van Swaaij, Solubility and diffusivity of acid gases (carbon dioxide, nitrous oxide) in aqueous alkanolamine solutions, J. Chem. Eng. Data 33 (1) (1988) 29-34. [42] X. Tian, L. Wang, P. Zhang, D. Fu, Surface thermodynamics, viscosity, activation energy of N-methyldiethanolamine aqueous solutions promoted by tetramethylammonium arginate, Entropy 22 (12) (2020) 1337. [43] G.K. Agrahari, S.K. Shukla, N. Verma, P.K. Bhattacharya, Model prediction and experimental studies on the removal of dissolved NH3 from water applying hollow fiber membrane contactor, J. Membr. Sci. 390 (2012) 164-174. [44] S. Eslami, S.M. Mousavi, S. Danesh, H. Banazadeh, Modeling and simulation of CO2 removal from power plant flue gas by PG solution in a hollow fiber membrane contactor, Adv. Eng. Softw. 42 (8) (2011) 612-620. [45] A.K. Saha, S.S. Bandyopadhyay, A.K. Biswas, Kinetics of absorption of CO2 into aqueous solutions of 2-amino-2-methyl-1-propanol, Chem. Eng. Sci. 50 (22) (1995) 3587-3598. [46] K.N. Rao, A.B. Ponnusami, Simulation studies on natural gas sweetening using piperazine amine, Petroleum Coal 60 (4) (2018) 632. [47] N.L. Grubben, K.J. Keesman, Controllability and observability of 2D thermal flow in bulk storage facilities using sensitivity fields, Int. J. Control. 91 (7) (2018) 1554-1566. [48] R. Kalman, On the general theory of control systems, IRE Trans. Autom. Control. 4 (3) (1959) 110-110. [49] J. Alvarez-Ramirez, Adaptive control of feedback linearizable systems: a modelling error compensation approach, Int. J. Robust Nonlin. Control. 9(6) (1999) 361-377. [50] F.A. Cleland, R.H. Wilhelm, Diffusion and reaction in viscous-flow tubular reactor, AIChE J. 2(4) (1956) 489-497. [51] J.J.E. Slotine, W. Li, Applied nonlinear control (Vol. 199, No. 1, p. 705), Englewood Cliffs, NJ: Prentice hall, 1991. [52] J. Wang, Z. Song, H. Cheng, L. Chen, L. Deng, Z. Qi, Multilevel screening of ionic liquid absorbents for simultaneous removal of CO2 and H2S from natural gas, Sep. Purif. Technol. 248 (2020) 117053. [53] M. Mirfendereski, T. Mohammadi, Investigation of H2S and CO2 removal from gas streams using hollow fiber membrane gas-liquid contactors, Chem. Biochem. Eng. Q. 31 (2) (2017) 139-144. [54] K.M.S. Salvinder, H. Zabiri, S.A. Taqvi, M. Ramasamy, F. Isa, N.E.M. Rozali, A.M. Shariff, An overview on control strategies for CO2 capture using absorption/stripping system, Chem. Eng. Res. Des. 147 (2019) 319-337. [55] C.Y. Wang, E. Mercer, F. Kamranvand, L. Williams, A. Kolios, A. Parker, E.J. McAdam, Tube-side mass transfer for hollow fiber membrane contactors operated in the low Graetz range, J. Membr. Sci. 523 (2017) 235-246. [56] A. McLeod, B. Jefferson, E.J. McAdam, Toward gas-phase controlled mass transfer in micro-porous membrane contactors for recovery and concentration of dissolved methane in the gas phase, J. Membr. Sci. 510 (2016) 466-471. [57] G.S.M.D.P. Sethunga, W. Rongwong, R. Wang, T.H. Bae, Optimization of hydrophobic modification parameters of microporous polyvinylidene fluoride hollow-fiber membrane for biogas recovery from anaerobic membrane bioreactor effluent, J. Membr. Sci. 548 (2018) 510-518. [58] J.M. Vadillo, G. Diaz-Sainz, L. Gomez-Coma, A. Garea, A. Irabien, Chemical and physical ionic liquids in CO2 capture system using membrane vacuum regeneration, Membranes 12 (8) (2022) 785. [59] S. Skogestad, Simple analytic rules for model reduction and PID controller tuning, J. Process Control. 13(4) (2003) 291-309. [60] J. Alvarez-Ramirez, J. Alvarez, A. Morales, An adaptive cascade control for a class of chemical reactors, Int. J. Adapt. Control Signal Process. 16 (10) (2002) 681-701. [61] Y.J. Huang, T.C. Kuo, S.H. Chang, Adaptive sliding-mode control for nonlinearsystems with uncertain parameters, IEEE Trans. Syst. Man. Cybern. B Cybern. 38 (2) (2008) 534-539. [62] I.L. Chien, S.C. Peng, J.H. Liu, Simple control method for integrating processes with long deadtime, J. Process Control. 12 (3) (2002) 391-404. [63] M. Rodriguez-Jara, C.E. Ramirez-Castelan, Q. Samano-Perfecto, L.A. Ricardez-Sandoval, H. Puebla, Robust control designs for microalgae cultivation in continuous photobioreactors, Int. J. Chem. React. Eng. 21(4) (2023) 521-535. [64] E.R. Piceno-Diaz, L.A. Ricardez-Sandoval, M.A. Gutierrez-Limon, H.O. Mendez-Acosta, H. Puebla, Robust nonlinear model predictive control for two-stage anaerobic digesters, Ind. Eng. Chem. Res. 59(52) (2020) 22559-22572. [65] H. Wang, Z. Wang, Q. Zhou, J. Liang, Y. Yin, W. Su, G. Wang, Optimization and sliding mode control of dividing-wall column, Ind. Eng. Chem. Res. 59 (45) (2020) 20102-20111. [66] H.U. Rodriguez Vera, L.A. Ricardez-Sandoval, Integration of scheduling and control for chemical batch plants under stochastic uncertainty: A back-off approach, Ind. Eng. Chem. Res. 61 (12) (2022) 4363-4378. [67] S. Houlker, C.J. Davey, A. Allemand, A. Brookes, A. Moore, P. Vale, E.J. McAdam, Reconciliation of gas to liquid mass transfer in parallel and transverse flow (cross-flow) hollow fiber membrane contactors (HFMC) for CO2 absorption, Sep. Sci. Technol. 56 (1) (2021) 129-140. [68] J.F. Estrada, M.I. Neria-Gonzalez, R. Aguilar-Lopez, Design of a class of super twisting sliding-mode controller: Application to bioleaching process, Proc. Bulg. Acad. Sci. 72 (5) (2019) 945-954. |