[1] M. Trafczynski, Handbook of process integration (PI). minimisation of energy and water use, waste and emissions, J. Clean. Prod. 88 (2015) 385-386. [2] J. Blanco, S. Malato, P. Fernandez-Ibanez, D. Alarcon, W. Gernjak, M.I. Maldonado, Review of feasible solar energy applications to water processes, Renew. Sustain. Energy Rev. 13 (6-7) (2009) 1437-1445. [3] Y. Youqi, C. Siwei. Process systems engineering in knowledge economic epoch--challenges and developing trends,Systems Engineering-theory & Practice, 22(8)(2022)1-15. [4] C.A. Floudas, X.X. Lin, Continuous-time versus discrete-time approaches for scheduling of chemical processes: a review, Comput. Chem. Eng. 28 (11) (2004) 2109-2129. [5] P.Y. Liew, T.G. Walmsley, S.R. Wan Alwi, Z. Abdul Manan, J.J. Klemes, P.S. Varbanov, Integrating district cooling systems in Locally Integrated Energy Sectors through Total Site Heat Integration, Appl. Energy 184 (2016) 1350-1363. [6] B. Linnhoff, E. Hindmarsh, The pinch design method for heat exchanger networks, Chem. Eng. Sci. 38 (5) (1983) 745-763. [7] R. W. Clayton, Cost reductions on an edible oil refinery identified by a process integration study at Van den Berghs and Jurgens Ltd., Report, Energy Efficiency Office R&D, UK, 1986. [8] P. R. Crump, Understanding Process Integration II : A Symposium, Institution of Chemical Engineers, Distributed by Hemisphere Pub, Washington,US,1988. [9] I.C. Kemp, Applications of the time-dependent cascade analysis in process integration, Heat Recovery Syst. CHP 10 (4) (1990) 423-435. [10] I. C. Kemp, A. W. Deakin. Cascade analysis for energy and process integration of batch processes. Part 2. Network design and process scheduling, Chemical Engineering Research and Design. 67(5)(1989)510-516. [11] I.C. Kemp, A.W. Deakin, Cascade analysis for energy and process integration of batch processes. Part 3. A case study, Chem. Eng. Res. Des. 67 (5) (1989) 517-525. [12] D.C.Y. Foo, Automated targeting technique for batch process integration, Ind. Eng. Chem. Res. 49 (20) (2010) 9899-9916. [13] D.K.S. Ng, D.C.Y. Foo, R.R. Tan, Targeting for total water network. 2. waste treatment targeting and interactions with water system elements, Ind. Eng. Chem. Res. 46 (26) (2007) 9114-9125. [14] N.D. Chaturvedi, S. Bandyopadhyay, Indirect thermal integration for batch processes, Appl. Therm. Eng. 62 (1) (2014) 229-238. [15] N.D. Chaturvedi, S. Bandyopadhyay, Optimization of multiple freshwater resources in a flexible-schedule batch water network, Ind. Eng. Chem. Res. 53 (14) (2014) 5996-6005. [16] P. Shahane, S. S. Jogwar. A novel algorithm for design of mixed energy-integrated batch process networks, Ifac Papersonline, 49(7)(2016) 67-72. [17] S.S. Mummana, S.B. Anne, R. Vooradi, A simple unit specific event based modeling framework for short term scheduling and heat integration of batch plants: Design and optimization of heat storage vessels, Comput. Chem. Eng. 145 (2021) 107155. [18] R. Vooradi, S.S. Mummana, Cyclic scheduling and heat integration of batch process: Design of heat storage vessels, Chem. Eng. Res. Des. 179 (2022) 130-142. [19] S.S. Mummana, R. Vooradi, Heat integration and cyclic scheduling of multipurpose batch plants using three index unit-specific event based model, Chem. Eng. Commun. 208 (8) (2021) 1167-1188. [20] J.A. Vaselenak, I.E. Grossmann, A.W. Westerberg, Heat integration in batch processing, Ind. Eng. Chem. Proc. Des. Dev. 25 (2) (1986) 357-366. [21] M. Bozan, F. Borak, I. Or, A computerized and integrated approach for heat exchanger network design in multipurpose batch plants, Chem. Eng. Process. Process. Intensif. 40 (6) (2001) 511-524. [22] I. Halim, R. Srinivasan, Sequential methodology for scheduling of heat-integrated batch plants, Ind. Eng. Chem. Res. 48 (18) (2009) 8551-8565. [23] L.G. Papageorgiou, N. Shah, C.C. Pantelides, Optimal scheduling of heat-integrated multipurpose plants, Ind. Eng. Chem. Res. 33 (12) (1994) 3168-3186. [24] B. Lee, G.V. Reklaitis, Optimal scheduling of cyclic batch processes for heat integration: I. Basic formulation, Comput. Chem. Eng. 19 (8) (1995) 883-905. [25] H. Tokos, Z.N. Pintaric, Development of a MINLP model for the optimization of a large industrial water system, Optim. Eng. 13 (4) (2012) 625-662. [26] J. Romero, A. Espuna, F. Friedler, L. Puigjaner, A new framework for batch process optimization using the flexible recipe, Ind. Eng. Chem. Res. 42 (2) (2003) 370-379. [27] P.M. Castro, B. Custodio, H.A. Matos, Optimal scheduling of single stage batch plants with direct heat integration, Comput. Chem. Eng. 82 (2015) 172-185. [28] A. Brook, D. Kendrick, A. Meeraus, GAMS, a user’s guide, SIGNUM Newsl. 23 (3-4) (1988) 10-11. [29] M. Marghany, Principles of genetic algorithm . Synthetic Aperture Radar Imaging Mechanism for Oil Spills. Elsevier, 2020. [30] M. Danish, S. Kumar, A. Qamareen, S. Kumar, Optimal solution of MINLP problems using modified genetic algorithm, Chem. Prod. Process. Model. 1 (1) (2006). DOI: 10.2202/1934-2659.1010. [31] A. Ponsich, C. Azzaro-Pantel, S. Domenech, L. Pibouleau, Some guidelines for genetic algorithm implementation in MINLP batch plant design problems, . Advances in Metaheuristics for Hard Optimization. Springer, (2007), pp 93-315. [32] C.T. Young, Y. Zheng, C.W. Yeh, S.S. Jang, Information-guided genetic algorithm approach to the solution of MINLP problems, Ind. Eng. Chem. Res. 46 (5) (2007) 1527-1537. [33] P. Van, M. Vanhoucke, A genetic algorithm for the preemptive and non-preemptive multi-mode resource-constrained project scheduling problem, Eur. J. Oper. Res. 201 (2) (2010) 409-418. [34] C.X. Guo, X.K. Wei, Thermal Energy Storage Technology and Application, Chemical Industry Press, Beijing, 2005. (in Chinese) [35] R.J. Zhou, L.J. Li, W. Xiao, H.G. Dong, Simultaneous optimization of batch process schedules and water-allocation network, Comput. Chem. Eng. 33 (6) (2009) 1153-1168. [36] Zheng Y P A. Simulation, Optimize and integration of Heat-exchanger System,Chemical Industry Press,Beijing,1992. [37] Kemp I C, Deakin A W. The cascade analysis for energy and process integration of batch processes. I: Calculation of energy targets,Chemical Engineering Research & Design, 67(5)(1989)495-509. [38] W. Wu, V.I. Christiana, S.N. Chen, J.J. Hwang, Design and techno-economic optimization of a stand-alone PV (photovoltaic)/FC (fuel cell)/battery hybrid power system connected to a wastewater-to-hydrogen processor, Energy 84 (2015) 462-472. [39] Y.X. Ding, Y.R. Liu, M.H. Wang, W.L. Du, F. Qian, Heat integration, simultaneous structure and parameter optimisation, and techno-economic evaluation of waste heat recovery systems for petrochemical industry, Energy 296 (2024) 131083. [40] J.J. Klemes, P.S. Varbanov, Z. Kravanja, Recent developments in process integration, Chem. Eng. Res. Des. 91 (10) (2013) 2037-2053. |