[1] A.H.N. Beni, R. Haghbakhsh, Sulfur dioxide capture by deep eutectic solvents: Proposing purely predictive absorption models, J. Hazard. Mater. 490 (2025) 137741. [2] Z. Chen, H.M. Wang, J.K. Zhuo, C.F. You, Experimental and numerical study on effects of deflectors on flow field distribution and desulfurization efficiency in spray towers, Fuel Process. Technol. 162 (2017) 1-12. [3] M. Khani, S.E. Mousavi, H. Pahlavanzadeh, H. Ale Ebrahim, A. Mozaffari, Study of MoO3-γAl2O3 catalysts behavior in selective catalytic reduction of SO2 toxic gas to sulfur with CH4, Environ. Sci. Pollut. Res. Int. 26 (10) (2019) 9686-9696. [4] X.X. Pi, F. Sun, Z.B. Qu, J.H. Gao, A.N. Wang, G.B. Zhao, H. Liu, Producing elemental sulfur from SO2 by calcium loaded activated coke: Enhanced activity and selectivity, Chem. Eng. J. 401 (2020) 126022. [5] K.H. Ng, S.Y. Lai, N.F.M. Jamaludin, A.R. Mohamed, A review on dry-based and wet-based catalytic sulphur dioxide (SO2) reduction technologies, J. Hazard. Mater. 423 (2022) 127061. [6] M.S. AlQahtani, X.X. Wang, J.L. Gray, S.D. Knecht, S.G. Bilen, C.S. Song, Plasma-assisted catalytic reduction of SO2 to elemental sulfur: Influence of nonthermal plasma and temperature on iron sulfide catalyst, J. Catal. 391 (2020) 260-272. [7] T.T. Ge, C.C. Zuo, H.N. Chen, Y. Muhammad, L.B. Wei, C.S. Li, Catalytic activity and molecular behavior of lanthanum modified CoSx/γ-Al2O3 catalysts for the reduction of SO2 to sulfur in smelter off-gas using CO-H2 mixture as reductant, Ind. Eng. Chem. Res. 58 (9) (2019) 3595-3605. [8] T. Feng, M.J. Huo, X.Q. Zhao, T. Wang, X. Xia, C.Y. Ma, Reduction of SO2 to elemental sulfur with H2 and mixed H2/CO gas in an activated carbon bed, Chem. Eng. Res. Des. 121 (2017) 191-199. [9] X. Kang, J.C. Liu, C.G. Tian, D.X. Wang, Y.R. Li, H.Y. Zhang, X.S. Cheng, A.P. Wu, H.G. Fu, Surface curvature-confined strategy to ultrasmall nickel-molybdenum sulfide nanoflakes for highly efficient deep hydrodesulfurization, Nano Res. 13 (3) (2020) 882-890. [10] S. Yue, Z. Yin, X. Zou, X. Zou, X. Lu, X. Wang, Mesoporous gamma-alumina-supported Mo catalysts: effect of calcination temperature, ChemistrySelect 7 (6) (2022) e202103743. [11] N.Q. Bui, C. Geantet, G. Berhault, Maleic acid, an efficient additive for the activation of regenerated CoMo/Al2O3 hydrotreating catalysts, J. Catal. 330 (2015) 374-386. [12] X.L. Cheng, X.Q. Chai, W.G. Hu, S.G. Li, Y. Zhu, The on-and-off dynamics of thiophene on a nickel cluster enables efficient hydrodesulfurization and excellent stability at high temperatures, Nanoscale 11 (10) (2019) 4369-4375. [13] I. Naboulsi, L. A. C. Felipe, B. Lebeau, S. Brunet, L. Michelin, M. Bonne, J.L. Blin, An unexpected pathway for hydrodesulfurization of gazole over a CoMoS active phase supported on a mesoporous TiO2 catalyst, Chem. Commun. 53 (18) (2017) 2717-2720. [14] W. Han, Y. Gao, S.H. Zhou, X.Y. Long, J.X. Liu, H. Nie, A novel and facile strategy for the preparation of highly reactive NiMo/γ-Al2O3 hydrodesulfurization catalyst, Sep. Purif. Technol. 359 (2025) 130685. [15] S.E. Skrabalak, K.S. Suslick, Porous MoS2 synthesized by ultrasonic spray pyrolysis, J. Am. Chem. Soc. 127 (28) (2005) 9990-9991. [16] D.C. Chen, X.X. Zhang, J. Tang, H. Cui, Y. Li, Noble metal (Pt or Au)-doped monolayer MoS2 as a promising adsorbent and gas-sensing material to SO2, SOF2 and SO2F2: a DFT study, Appl. Phys. A 124 (2) (2018) 194. [17] A. Abbasi, J.J. Sardroodi, Adsorption of O3, SO2 and SO3 gas molecules on MoS2 monolayers: a computational investigation, Appl. Surf. Sci. 469 (2019) 781-791. [18] Q. Liu, J.J. Gao, F.N. Gu, X.P. Lu, Y.J. Liu, H.F. Li, Z.Y. Zhong, B. Liu, G.W. Xu, F.B. Su, One-pot synthesis of ordered mesoporous Ni-V-Al catalysts for CO methanation, J. Catal. 326 (2015) 127-138. [19] L.L. Sun, P. Han, S. Tang, Preparation of ordered mesoporous alumina supported-ZnO/NiO nanocomposite using supercritical carbon dioxide impregnation and its photocatalytic performance, ChemNanoMat 5 (6) (2019) 723-728. [20] H. Wang, W. Zhu, G.Q. Yang, Y.W. Zhang, Y.H. Song, N.Z. Jiang, Z.T. Liu, Z.W. Liu, Insights into the oxidative dehydrogenation of ethylbenzene with CO2 catalyzed by the ordered mesoporous V2O5-Ce0.5Zr0.5O2-Al2O3, Ind. Eng. Chem. Res. 58 (47) (2019) 21372-21381. [21] S.M. Morris, P.F. Fulvio, M. Jaroniec, Ordered mesoporous alumina-supported metal oxides, J. Am. Chem. Soc. 130 (45) (2008) 15210-15216. [22] Y. Wang, M.Q. Hua, S.H. Zhou, D.M. Hu, F. Liu, H.F. Cheng, P.W. Wu, H.B. Wu, J.X. Liu, W.S. Zhu, Regulating the coordination environment of surface alumina on NiMo/Al2O3 to enhance ultra-deep hydrodesulfurization of diesel, Appl. Catal. B Environ. Energy 357 (2024) 124265. [23] R.X. Yan, X.Q. Liu, J.X. Liu, L. Zhang, S.H. Zhou, L.F. Jia, M.Q. Hua, H.M. Li, H.Y. Ji, W.S. Zhu, Modulating the active phase structure of NiMo/Al2O3 by La modification for ultra-deep hydrodesulfurization of diesel, AlChE. J. 69 (2) (2023) e17873. [24] B. Lertpanyapornchai, T. Yokoi, C. Ngamcharussrivichai, Citric acid as complexing agent in synthesis of mesoporous strontium titanate via neutral-templated self-assembly Sol-gel combustion method, Microporous Mesoporous Mater. 226 (2016) 505-509. [25] H. Liu, Y.P. Li, C.L. Yin, Y.L. Wu, Y.M. Chai, D.M. Dong, X.H. Li, C.G. Liu, One-pot synthesis of ordered mesoporous NiMo-Al2O3 catalysts for dibenzothiophene hydrodesulfurization, Appl. Catal. B Environ. 198 (2016) 493-507. [26] S.N. Yue, D.F. Xu, Y. Sheng, Z.Q. Yin, X.J. Zou, X.G. Wang, X.L. Zou, X.G. Lu, One-step synthesis of mesoporous alumina-supported molybdenum carbide with enhanced activity for thiophene hydrodesulfurization, J. Environ. Chem. Eng. 9 (4) (2021) 105693. [27] L.L. Xu, Y. Cui, M.D. Chen, X.B. Lian, B. Yang, C.E. Wu, F.G. Wang, Effects of the fabrication strategy on the catalytic performances of Co-Ni bimetal ordered mesoporous catalysts toward CO2 methanation, Sustainable Energy Fuels 3 (11) (2019) 3038-3049. [28] R.Q. Raguindin, B.Z. Desalegn, H. Vishwanath, M.N. Gebresillase, J.G. Seo, Enhanced hydrogenation of levulinic acid over ordered mesoporous alumina-supported catalysts: elucidating the effect of fabrication strategy, ChemSusChem 15 (5) (2022) e202102662. [29] Y.Q. Yang, Y. Chen, J.Y. Yu, C.S. Li, E.Q. Wang, Z.J. Peng, Self-assembly preparation of Al2O3/MoS2 bifunctional catalyst for highly efficient reduction of SO2 to elemental sulfur, Ind. Eng. Chem. Res. 62 (13) (2023) 5668-5676. [30] Y.Q. Yang, J.Y. Yu, Y. Chen, G. Wang, C.S. Li, E.Q. Wang, Z.J. Peng, A novel synthetic method of porous and nanoflower-like Al2O3/MoS2 catalyst for reduction of SO2 to elemental sulfur, Nano Res. 16 (5) (2023) 6076-6084. [31] P.D. Yang, D.Y. Zhao, D.I. Margolese, B.F. Chmelka, G.D. Stucky, Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks, Nature 396 (1998) 152-155. [32] D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores, Science 279 (5350) (1998) 548-552. [33] Q. Yuan, A.X. Yin, C. Luo, L.D. Sun, Y.W. Zhang, W.T. Duan, H.C. Liu, C.H. Yan, Facile synthesis for ordered mesoporous gamma-aluminas with high thermal stability, J. Am. Chem. Soc. 130 (11) (2008) 3465-3472. [34] Z.R. Zhang, T.J. Pinnavaia, Mesostructured gamma-Al(2)O(3) with a lathlike framework morphology, J. Am. Chem. Soc. 124 (41) (2002) 12294-12301. [35] Y.S. Xiao, Y.H. Song, Q.X. Luo, X.Y. Shi, J.G. Li, Q.Q. Hao, Z.T. Liu, Z.W. Liu, Kinetics behavior of Co/Ni-ordered mesoporous alumina for the CO methanation, Chem. Eng. Sci. X 10 (2021) 100094. [36] Q.H. Wei, X.H. Gao, L.H. Wang, Q.X. Ma, Rational design of nickel-based catalyst coupling with combined methane reforming to steadily produce syngas, Fuel 271 (2020) 117631. [37] B. Liu, L. Liu, Y.M. Chai, J.C. Zhao, C.G. Liu, Essential role of promoter Co on the MoS2 catalyst in selective hydrodesulfurization of FCC gasoline, J. Fuel Chem. Technol. 46 (4) (2018) 441-450. [38] P.J. Mangnus, A. Riezebos, A.D. Vanlangeveld, J.A. Moulijn, Temperature-programmed reduction and HDS activity of sulfided transition metal catalysts: formation of nonstoichiometric sulfur, J. Catal. 151 (1) (1995) 178-191. [39] N.K. Nag, D. Fraenkel, J.A. Moulijn, B.C. Gates, Characterization of hydroprocessing catalysts by resolved temperature-programmed desorption, reduction and sulfiding, J. Catal. 66 (1) (1980) 162-170. [40] P. Afanasiev, On the interpretation of temperature programmed reduction patterns of transition metals sulphides, Appl. Catal. A Gen. 303 (1) (2006) 110-115. [41] W.X. Ji, R. Shen, R. Yang, G.Y. Yu, X.F. Guo, L.M. Peng, W.P. Ding, Partially nitrided molybdenum trioxide with promoted performance as an anode material for lithium-ion batteries, J. Mater. Chem. A 2 (3) (2014) 699-704. [42] H.X. Shu, H.K. Sang, C.M. Tang, K. Ma, X.L. Li, Sulfur vacancy-rich molybdenum disulfide 3D evaporator enhanced photothermal conversion for seawater desalination and wastewater purification, Chem. Eng. J. 506 (2025) 160060. [43] N.M.D. Brown, N.Y. Cui, A. McKinley, An XPS study of the surface modification of natural MoS2 following treatment in an RF-oxygen plasma, Appl. Surf. Sci. 134 (1-4) (1998) 11-21. [44] S. Mondal, K.D. Rajan, L. Patra, M. Rathinam, V. Ganesh, Sulfur vacancy-induced enhancement of piezocatalytic H2 production in MoS2, Small 21 (11) (2025) 2411828. [45] L.L. Xu, H.H. Zhao, H.L. Song, L.J. Chou, Ordered mesoporous alumina supported nickel based catalysts for carbon dioxide reforming of methane, Int. J. Hydrog. Energy 37 (9) (2012) 7497-7511. [46] B. Liu, B. Liu, Y. Chai, Y.P. Li, A.J. Wang, Y.Q. Liu, C.G. Liu, Effect of sulfidation atmosphere on the performance of the CoMo/γ-Al2O3 catalysts in hydrodesulfurization of FCC gasoline, Applied Catalysis A: General 471 (2014) 70-79 . |