1 Zeng, R., Guan, J.Y., “Progress in pressure swing adsorption models during the recent 30 years”, Chin. J. Chem. Eng., 10(2), 228-235(2002). 2 Huang, L., Sun, L., Wang, N., Jin, X.M., “Multiobjective optimization of simulated moving bed by tissue P system”, Chin. J. Chem. Eng., 15(5), 683-690(2007). 3 Sarabia, D., De, P.C., Cristea, S., “Hybrid predictive control of a simulated continuous-batch process”, In:Proceedings of the 16th IEEE International Conference on Control Applications, Singapore, 1400-1407(2007). 4 Shaw, K.J., Lee, P.L., Nott, H.P., Thompson, M., “Genetic algorithms for multiobjective scheduling of combined batch/continuous process plants”, In:Proceedings of the IEEE Conference on Evolutionary Computation, California, USA, 293-300(2000). 5 ZOU, T., LI, S.Y., “Constraints adjustment and objectives coordination of satisfying optimal control applied to heavy oil fractionators”, Chin. J. Chem. Eng., 13(3), 380-387(2005). 6 Camacho, E.F., Bordons, C., Model Predictive Control, Springer, New York(2004). 7 Morari, M., Lee, J.H., “Model predictive control:Past, present and future”, Comput. Chem. Eng., 23(4/5), 667-682(1999). 8 Qin, S.J., Badgwell, T.A., “A survey of industrial model predictive control technology”, Control Eng. Pract., 11(7), 733-764(2003). 9 Xu, J.X., Tan, Y., Linear and Nonlinear Iterative Learning Control, Springer-Verlag, Berlin(2003). 10 Lee, J.H., Lee, K.S., “Iterative learning control applied to batch processes:An overview”, Control Eng. Pract., 15(10), 1306-1318(2007). 11 Arimoto, S., Kawamura, S., Miyazaki, F., “Bettering operation of robots by learning”, J. Robotic System, 1(2), 123-140(1984). 12 Lee, K.S., Chin, I.S., Lee, H.J., Lee, J.H., “Model predictive control technique combined with iterative learning for batch processes”, AIChE J., 45(10), 2175-2187(1999). 13 Lee, J.H., Lee, K.S., Kim, W.C., “Model-based iterative learning control with a quadratic criterion for time-varying linear systems”, Automatica, 36(5), 641-657(2000). 14 Wang, Y., Zhou, D., Gao, F., “Iterative learning model predictive control for multi-phase batch processes”, Journal of Process Control, 18(6), 543-557(2008). 15 Cueli, J.R., Bordons, C., “Iterative nonlinear model predictive control. Stability, robustness and applications”, Control Eng. Pract., 16(9), 1023-1034(2008). 16 Tan, K.K., Huang, S.N., Lee, T.H., Tay, A., “Disturbance compensation incorporated in predictive control system using a repetitive learning approach”, Systems and Control Letters, 56(1), 75-82(2007). 17 Kassmann, D.E., Badgwell, T.A., Hawkins, R.B., “Robust steady-state target calculation for model predictive control”, AIChE J., 46(5), 1007-1024(2000). 18 Rao, C.V., Rawlings, J.B., “Steady states and constraints in model predictive control”, AIChE J., 45(6), 1266-1278(1999). 19 Haseloff, V., Friedman, Y.Z., Goodhart, S.G., “Implementing coker advanced process control”, Hydrocarbon Processing, 86(6), 99-103(2007). |