1 Cheruy, A., “Software sensors in bioprocess engineering”, J. Biotechnol., 52 (3), 193-199 (1997). 2 Komives, C., Parker, R.S., “Bioreactor state estimation and control”, Curr. Opin. Biotech., 14 (5), 468-474 (2003). 3 Sonnleitnert, B., Kappeli, O., “Growth of Saccharomyces cerevisiae is controlled by its limited respiratory capacity:Formulation and verification of a hypothesis”, Biotechnol. Bioeng., 28 (6), 927-937 (1986). 4 Birol, G., Undey, C., Parulekar, S.J., Cinar, A., “A morphologically structured model for penicillin production”, Biotechnol. Bioeng., 77 (5), 538-552 (2002). 5 Dochain, D., “State and parameter estimation in chemical and biochemical processes:A tutorial”, J. Process Contr., 13 (8), 801-818 (2003). 6 Vapnik, V.N., The Nature of Statistical Learning Theory, Springer Verlag, New York (1995). 7 Desai, K., Badhe, Y., Tambe, S.S., Kulkarni, B.D., “Soft-sensor development for fed-batch bioreactors using support vector regression”, Biochem. Eng. J., 27 (3), 225-239 (2006). 8 Wang, J.L., Yu, T., Jin, C.Y., “On-line estimation of biomass in fermentation process using support vector machine”, Chin. J. Chem. Eng., 14 (3), 383-388 (2006). 9 Patnaik, P.R., “Improvement of the microbial production of streptokinase by controlled filtering of process noise”, Process Biochem., 35, 309-315 (1999). 10 Romanenko, A., Castro J. A., “The unscented filter as an alternative to the EKF for nonlinear state estimation:A simulation case study”, Comput. Chem. Eng., 28 (3), 347-355 (2004). 11 Julier, S.J., Uhlmann, J.K., “A new extension of the Kalman filter to nonlinear systems”, In:Proceedings of AeroSense:The 11th International Symposium on Aerosoace/Defence Sensing, Simulation and Controls, SPIE, Orlando, USA, 182-193 (1997). 12 Kandepu, R., Foss, B., Imsland, L., “Applying the unscented Kalman filter for nonlinear state estimation”, J. Process Contr., 18, 753-768 (2008). 13 Marmol, E.M., Luyben, W.L., Georgakis, C., “Application of an extended Luenberger observer to the control of multicomponent batch distillation”, Ind. Eng. Chem. Res, 30 (8), 1870-1880 (1991). 14 Kennedy, J., Eberhart, R., “Particle swarm optimization”, In:Proceedings of the IEEE International Conference on Neural Networks, IEEE, Perth, Australia, 1942-1948 (1995). 15 Kolas, S., Foss, B.A., Schei, T.S., “Constrained nonlinear state estimation based on the UKF approach”, Comput. Chem. Eng., 33 (8), 1386-1401 (2009). 16 Birol, G., Undey, C., Cinar, A., “A modular simulation package for fed-batch fermentation:Penicillin production”, Comput. Chem. Eng., 26 (11), 1553-1565 (2002). 17 Eberhart, R.C, Shi, Y., “Comparing inertia weights and constriction factors in particle swarm optimization”, In:Proceedings of the IEEE Congress on Evolutionary Computation, IEEE, San Diego, USA, 84-88 (2000). 1 8 Fan, R.E., Chen, P.H., Lin, C.J., “Working set selection using second order information for training support vector machines”, J. Mach. Learn. Res., 6, 1889-1918 (2005). 19 Tahir, S.F., Khan, A., Majid, A., Mirza, A.M., “Support vector machine based intelligent watermark decoding for anticipated attack”, Int. J. Appl. Math. Comput. Sci., 1 (1), 7-12 (2005). |