1 De Kleer, J., “Multiple representations of knowledge in a mechanics problem solver”, In:IJCAI'77, Proceedings of the 5th International Joint Conference on Artificial Intelligence Vol. 1, Morgan Kaufmann Publishers Inc., San Francisco, USA, 299-304 (1977). 2 De Kleer, J., Brown, J.S., “A qualitative physics based on confluences”, Artificial Intelligence, 24 (1-3), 7-83 (1984). 3 Forbus, K.D., “Qualitative process theory”, Artificial Intelligence, 24 (1-3), 85-168 (1984). 4 Forbus, K.D., Qualitative Modeling, John Wiley & Sons, Ltd., USA (2010). 5 Kuipers, B., “Qualitative simulation”, Artificial Intelligence, 29 (3), 289-338 (1986). 6 Kuipers, B., Qualitative Reasoning:Modeling and Simulation with Incomplete Knowledge, MIT Press, Cambridge (1994). 7 Wu, C.G., Zhang, W.H., Xia, Y.C., Na, Y.L., Wu, F.B., “Concise expression methods of qualitative algebra equation-affection equation and modeling”, Journal of System Simulation, 21 (19), 5990-5993, 5997 (2009). (in Chinese) 8 Na, Y.L., Wu, C.G., Xia, Y.C., Zhang, W.H., “Qualitative algebra and SDG graph theory method for dynamic trend analysis of continuous system”, Journal of System Simulation, 21 (18), 5629-5635 (2009). (in Chinese) 9 Kuipers, B., str m, K., “The composition and validation of heterogeneous control laws”, Journal of IFAC, 30 (2), 233-249 (1994). 10 Shults, B., Kuipers, B.J., “Proving properties of continuous systems:Qualitative simulation and temporal logic”, Artificial Intelligence, 92 (1-2), 91-129 (1997). 11 Kay, H., Rinner, B., Kuipers, B., “Semi-quantitative system identification”, Artificial Intelligence, 119 (1-2), 103-140 (2000). 12 Meyers, R.A., Encyclopedia of Physical Science and Technology, 3rd edition, Academic Press, Salt Lake City (2001). 13 Oyeleye, O.O., Kramer, M.A., “Qualitative simulation of chemical process systems:Steady-state analysis”, AIChE J., 34 (9), 1441-1454 (1988). 14 Shi, C.Y., Liao, S.Z., Qualitative Reasoning Method, Tsinghua University Press, Beijing (2001). (in Chinese) 15 Wu, C.G., Xia, T., Zhang, B.K., “The qualitative simulation based on deep knowledge model of signed directed graph”, Journal of System Simulation, 15 (10), 1351-1355 (2003). (in Chinese) 16 Lapp, S.A., Powers, G.J., “Computer-aided synthesis of fault-trees”, IEEE Trans. Reliab., 26 (2), 2-12 (1977). 17 Iri, M., Aoki, K., O'Shima, E., Matsuyama, H., “An algorithm for diagnosis of system failures in the chemical process”, Computers and Chemical Engineering, 3 (1-4), 489-493 (1979). 18 Shiozaki, J., Matsuyama, H., Tano, K., O'shima, E., “Fault diagnosis of chemical processes by the use of signed, directed graphs. Extension to five-range patterns of abnormality”, Int. Chem. Eng., 25 (4), 651-659 (1985). 19 Tsuge, Y., Shiozaki, J., Matsuyama, H., O'Shima, E., Iguchi, Y., Fuchigami, M., Matsushita, M., “Fesibility study of a fault-diagnosis system for chemical plants”, Int. Chem. Eng., 25 (4), 660-667 (1985). 20 Kramer, M. A., Palowitch, B. L., “A rule-based approach to fault diagnosis using the signed directed graph”, AIChE J., 33 (7), 1067-1078 (1987). 21 Chang, C.C., Yu, C.C., “Online fault diagnosis using the signed directed graph”, Industrial & Engineering Chemistry Research, 29 (7), 1290-1299 (1990). 22 Yu, C.C., Lee, C., “Fault diagnosis based on qualitative/quantitative process knowledge”, AIChE J., 37 (4), 617-628 (1991). 23 Vedam, H., Venkatasubramanian, V., “Signed digraph based multiple fault diagnosis”, Computers and Chemical Engineering, 21, S655-S660 (1997). 24 Zhang, Z.Q., Wu, C.G., Zhang, B.K., Xia, T., Li, A.F., “SDG multiple fault diagnosis by real-time inverse inference”, Reliab. Eng. Syst. Saf., 87 (2), 173-189 (2005). (in Chinese) Figure 5 The dynamic change trend analysis of P01 off |