1 Gannon, R.E., Manyik, R.M., Dietz, C.M., Sargent, H.B., Thribolet, R.O., Schaffer, R.P., “Acetylene”, In: Kirk-Othmer Encycl. of Chem. Tech., 5th edition, John Wiley & Sons, Inc., New York, 177-178(2008). 2 P ssler, P., Hefner, W., Buckl, K., Meinass, H., Meiswinkel, A., Wernicke, H., Ebersberg, G., Müller, R., B ssler, J., Behringer, H., Mayer, D., “Acetylene”, In: Ullmann’s Encycl. of Ind. Chem., 7th edition, Wiley-VCH Verlag GmbH & Co.,Weinheim, 9-36(2008). 3 Yen, C.Y., Process Economics Progam(PEP) Report 16A: Acetylene SRI Consulting, California(1981). 4 Wang, Z.F., Zheng, D.X., “Exergy analysis and retrofitting of natural gas-based acetylene process”, Chin. J. Chem. Eng., 16(5), 812-818(2008). 5 Cao, S., Wang, D.Z., Wang, T.F., “Simulation of partial oxidation of natural gas with detailed chemistry: Influence of addition of H2, C2H6 and C3H8”, Chem. Eng. Sci., 65(8), 2608-2618(2010). 6 Basevich, V.Y., Kogarko, S.M., “Kinetics of acetylene formation in combustion of methane-oxygen mixtures”, Combust. Explo. Shock Waves, 14(1), 35-40(1978). 7 Veynante, D., Vervisch, L., “Turbulent combustion modeling”, Prog. Energy Combust. Sci., 28(3), 193-266(2002). 8 Buckmaster, J., Clavin, P., Li án, A., Matalon, M., Peters, N., Sivashinsky, G., Williams, F.A., “Combustion theory and modeling”, Proc. Combust. Inst., 30(1), 1-19(2005). 9 Bilger, R.W., Pope, S.B., Bray, K.N.C., Driscoll, J.F., “Paradigms in turbulent combustion research”, Proc. Combust. Inst., 30(1), 21-42(2005). 10 Poinsot, T., Veynante, D., Theoretical and Numerical Combustion, 2nd edition, R.T. Edwards, Inc., Philadelphia(2005). 11 Pope, S.B., “PDF methods for turbulent reactive flows”, Prog. Energy Combust. Sci., 11(2), 119-192(1985). 12 Pope, S.B., “Computations of turbulent combustion: Progress and challenges”, Proc. Combust. Inst., 23(1), 591-612(1991). 13 Masri, A.R., Cao, R., Pope, S.B., Goldin, G.M., “PDF calculations of turbulent lifted flames of H2/N2 fuel issuing into a vitiated co-flow”, Combust. Theory Model., 8(1), 1-22(2004). 14 Gordon, R.L., Masri, A.R., Pope, S.B., Goldin, G.M., “A numerical study of auto-ignition in turbulent lifted flames”, Combust. Theory Model., 11(3), 351-376(2007). 15 Gordon, R.L., Masri, A.R., Pope, S.B., Goldin, G.M., “Transport budgets in turbulent lifted flames of methane autoigniting in a vitiated co-flow”, Combust. Flame, 151(1-2), 495-511(2007). 16 Liu, B.J.D., Pope, S.B., “The performance of in situ adaptive tabulation in computations of turbulent flames”, Combust. Theory Model., 9(4), 549-568(2005). 17 Nooren, P.A., Wouters, H.A., Peeters, T.W.J., Roekaerts, D., Maas, U., Schmidt, D., “Monte Carlo PDF modeling of a turbulent naturalgas diffusion flame”, Combust. Theory Model., 1(1), 79-96(1997). 18 Leroux, P.J., Methien, P.M., “Kinetics of the pyrolysis of methane to acetylene”, Chem. Eng. Prog., 11(1), 54-62(1961). 19 Versteeg, H.K., Malalasekera, W., An Introduction to Computational Fluid Dynamics, 2nd edition, Pearson Education Ltd., England(2007). 20 Cooper, C.M., Wiezevich, P.J., “Effects of temperature and pressure on the upper explosive limit of methane-oxygen mixtures”, Ind. Eng. Chem., 21(12), 1210-1214(1929). 21 Kovalivnich, A.M., Glikin, M.A., Nuzhda, L.I., “Self-ignition upon mixture of heated methane and oxygen in acetylene production and methane conversion processes”, Combust. Explo. Shock Waves, 10(3), 446-449(1974). 22 Hartlieb, A.T., Atakan, B., Kohse-H inghaus, K., “Effects of a sampling quartz nozzle on the flame structure of a fuel-rich low-pressure propene flame”, Combust. Flame, 121(4), 610-624(2000). 23 FLUENT 6.3 package, FLUENT Inc., New Hampshire(2006). 24 Subramanian, S., Pope, S.B., “A mixing model for turbulent reactive flows based on Euclidean Minimum Spanning Trees”, Combust. Flame, 115(4), 487-514(1998). 25 Hughes, K.J., Turányi, T., Clague, A., Pilling, M.J., “Development and testing of a comprehensive chemical mechanism for the oxidation of methane”, Int. J. Chem. Kinet., 33(9), 513-538(2001). 26 Pope, S.B., “Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation”, Combust. Theory Model., 1(1), 41-63(1997). 27 Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Gardiner, W.C., Jr., Lissianski, V.V., Qin, Z.W., GRI-Mech 3.0, http://www.me.berkeley.edu/gri_mech/ 28 Waly, M.M.Y., Ibrahim, S.M.A., Li, S.C., Williams, F.A., “Structure of two-stage flames of natural gas with air”, Combust. Flame, 125(3), 1217-1221(2001). 29 Waly, M.M.Y., Li, S.C., Williams F.A., “Structures of non-sooting counterflow diluted acetylene-air flames”, Proc. Combust. Inst., 28(2), 2005-2012(2000). 30 Wang, Y.F., Liu, L.C., Quartz Glass, Chemical Industry Press, Beijing(2006).(in Chinese) 31 Tan, T.E., Mai, B.X., Ding, H.H., Principles of Chemical Engineering, Chemical Industry Press, Beijing(2004).(in Chinese) 32 Warnatz, J., Maas, U., Dibble, R. W., Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation, 2nd edition, Springer-Verlag, Berlin(1999). 33 Law, C.K., Combustion Physics, Cambridge University Press, New York(2006). |