1 Zheng, Y.Q., Fan, J.R., Ma, Y.L., Sun, P., Cen, K.F., “Computational modeling of tangentially fired boiler (Ⅱ) NOx emissions”, Chin. J. Chem. Eng., 8(3), 247—250(2000). 2 Hill, S.C., Douglas, S.L., “Modeling of nitrogen forma-tion and destruction in combustion systems”, Prog. En-ergy Combust. Sci., 26(5), 417—458(2000). 3 Zhang, Y., Zhou, L.X., Wei, X.L., Sheng, H.Z., “Nu-merical simulation of NOx formation in coal combustion with inlet natural gas burning”, Chin. J. Chem. Eng., 13 (3), 318—323(2005). 4 Li, G.X., “Modelling of turbulent nonpremixed CH4/H2 flame using second-moment turbulence closure models”, Chin. J. Chem. Eng., 13 (1), 1—8(2005). 5 Sreedhara, S., Huh, K.Y., “Modeling of turbulent, two-dimensional nonpremixed CH4/H2 flame over a bluffbody using first- and second-order elliptic condi-tional moment closures”, Combust. Flame, 143(2), 119—134(2005). 6 Shy, S.S., Yang, S.L., Lin, W.J., Su, R.C., “Turbulent burning velocities of premixed CH4/diluent/air flames in intense isotropic turbulence with consideration of radia-tion losses”, Combust. Flame, 143(2), 106—118(2005). 7 Smith, P.J., Hill, S.C., Smoot, D.L., “Theory for NO for-mation in turbulent coal flames”, In: Proceedings of the 19th Symposium (Int.) on Combustion, the Combustion Institute, 1263—1270(1983). 8 Zsély, I. G., Zádor, J., Turányi, T., “Similarity of sensitiv-ity functions of reaction kinetic models”, J. Phys. Chem. A, 107, 2216—2238(2003). 9 Zádor, J., Zsély, I. G., Turányi, T., “Investigation of the correlation of sensitivity vectors of hydrogen combustion models”, Int. J. Chem. Kinet., 36(4), 238—252(2004). 10 Naha, S., Aggarwal, S.K., “Fuel effects on NOx emis-sions in partially premixed flames”, Combust. Flame, 139(2), 90—105(2004). 11 Hughes, K.J., Urányi, T.T., Clague, A., Pilling, M.J., “Development and testing of a comprehensive chemical mechanism for the oxidation of methane”, Int. J. Chem. Kinet., 33(9), 513—538(2001). 12 Meunier, P.H., Costa, M., Carvalho, M.G., “The forma-tion and destruction of NO in turbulent propane diffusion flames”, Fuel, 77(15), 1705—1714(1998). 13 Chen, C.P., Chen, J.Y., Yam, C.G., Marx, K.D., “Nu-merical modeling of NO formation in laminar burning flames—a flamelet approach”, Combust. Flame, 114(3), 420—435(1998). 14 Datta, A., Som, S. K., “Combustion and emission char-acteristics in a gas turbine combustor at different pres-sure and swirl conditions”, Appl. Thermal Eng., 19(9), 949—967(1999). 15 Zhou, L.X., Chen, X.L., Zheng, C.G., Yin, J., “Sec-ond-order moment turbulence-chemistry models for simulating NOx formation in gas combustion”, Fuel, 79(11), 1289—1301(2000). 16 Caldeira-Pires, A., Heitor, M.V., Carvalho, J.J.A., “Charac-teristics of nitric oxide formation rates in turbulent non-premixed jet flames”, Combust. Flame, 120 (3), 383—391(2000). 17 Toshio, S., Takashi, M., “NOx emission characteristics in rich-lean combustion of hydrogen”, JSAE Review, 23(1), 9—14(2002). 18 Guo, Z.M., Zhang, H.Q., “Presumed joint probability density function model for turbulent combustion”, Fuel, 82 (9), 1091—1101(2003). 19 Frassoldati, A., Faravelli, T., Ranzi, E., “Kinetic model-ing of the interactions between NO and hydrocarbons at high temperature”, Combust. Flame, 135(2), 97—112(2003). 20 Khatua, S., Held, G., King, D.A., “Model car-exhaust catalyst studied by TPD and TP-RAIRS: Surface reac-tions of NO on clean and O-covered Ir{100}”, Surf. Sci., 586(1), 1—14(2005). 21 Skjøth-Rasmussen, M.S., Glarborg, P., Østberg, M., Jo-hannessen, J.T., Livbjerg, H. Jensen, A.D., Christensen, T.S., “Formation of polycyclic aromatic hydrocarbons and soot in fuel-rich oxidation of methane in a laminar flow reactor”, Combust. Flame, 136(1), 91—128(2004). 22 Drake, M.C., Correa, S.M., Pitz, R.W., Shyy, W., Feni-more, C.P., “Superequilibrium and thermal nitric oxide formation in turbulent diffusion flames”, Combust. Flame, 69(4), 347—365(1987). 23 Raine, R.R., Stone, C.R., Gould, J., “Modeling of nitric oxide formation in spark ignition engines with a mul-tizone burned gas”, Combust. Flame, 102(3), 241—255(1995). 24 Barlow, R.S., Frank, J.H., Karpetis, A.N., Chen, J.Y., “Pi-loted methane/air jet flames: Transport effects and aspects of scalar structure”, Combust. Flame, 143(4), 433—449(2005). 25 Zhou, L.X., Qiao, X.L., “A USM turbulence-chemistry model for simulating NOx formation in turbulent com-bustion”, Fuel, 81(13), 1703—1709(2002). 26 Zhou, L.X., Wang, F., Zhang, J., “Simulation of swirling combustion and NO formation using a USM turbu-lence-chemistry model”, Fuel, 82(13), 1579—1586(2003). 27 Veynante, D., Vervisch L., “Turbulent combustion mod-eling”, Prog. Energy Combust. Sci., 28(3), 193—266(2002). 28 Shih, T.H., Liou, W.W., Shabbir, A., Zhu, J., “A new k-ε eddy-viscosity model for high Reynolds number turbu-lent flows-model development and validation”, Comput. Fluid., 24(3), 227—238(1995). 29 Hanson, R.K., Salimian, S., “Survey of rate constants in H/N/O system”, Combustion Chemistry, Springer-Verlag, New York, 361—376(1984).
|