1 Chandler, C.D., Roger, C., Hampden-Smith, M.J., “Chemical aspects of solution routes to perovskite-phase mixed- metal oxides from metal-organic precursors”, Chem. Rev., 93, 1205(1993). 2 Millis, A.J., “Lattice effects in magnetoresistive perovskites”, Nature, 392, 147(1998). 3 Pena, M.A., Fierro, J.L.G., “Chemical structures and per-formance of perovskite oxides”, Chem. Rev., 101, 1981(2001). 4 Potdar, H.S., Deshpande, S.B., Date, S.K., “Chemical coprecipitation of mixed (Ba+Ti) oxalates precursor leading to BaTiO3 powders”, Mater. Chem. Phys., 58, 121(1999). 5 Hu, M.Z.C., Miller, G.A., Payzant, E.A., Rawn, C.J., “Homogeneous (co)precipitation of inorganic salts for synthesis of monodispersed barium titanate particles”, J. Mater. Sci., 35, 2927(2000). 6 Rumpf, H., Modrow, H., Hormes, J., Glasel, H.J., Hart-mann, E., Erdem, E., Bottcher, R., Hallmeier, K.H., “Preparation of nanocrystalline BaTiO3 characterized by in Situ X-ray absorption spectroscopy”, J. Phys. Chem. B, 105, 3415(2001). 7 Kumar, V., “Solution-precipitation of fine powders of barium titanate and strontium titanate”, J. Am. Ceram. Soc., 82, 2580(1999). 8 Grohe, B., Miehe, G., Wegner, G., “Additive controlled crystallization of barium titanate powders and their ap-plication for thin-film ceramic production: (Ⅰ). Powder synthesis”, J. Mater. Res., 16, 1901(2001). 9 Frey, M.H., Payne, D.A., “Synthesis and processing of barium titanate ceramics from alkoxide solutions and monolithic gels”, Chem. Mater., 7, 123(1995). 10 Shimooka, H., Kohiki, S., Kobayashi, T., Kuwabara, M., “Preparation of translucent barium titanate ceramics from sol-gel-derived transparent monolithic gels”, J. Mater. Chem., 10, 1511(2000). 11 Hung, K.M., Yang, W.D., Huang, C.C. “Preparation of nanometer-sized barium titanate powders by a sol-precipitation process with surfactants”, J. Eur. Ce-ram. Soc., 23, 1901(2003). 12 Dixit, A., Majumder, S.B., Dobal, P.S., Katiyar, R.S., Bhalla, A.S., “Phase transition studies of sol-gel depos-ited barium zirconate titanate thin films”, Thin Solid Films, 447/448, 284(2004). 13 Dutta, P.K., Gregg, J.R., “Hydrothermal synthesis of tetragonal barium titanate (BaTiO3)”, Chem. Mater., 4, 843(1992). 14 Lencka, M.M., Nielsen, E., Anderko, A., Riman, R.E., “Hydrothermal synthesis of carbonate-free strontium zirconate: thermodynamic modeling and experimental verification”, Chem. Mater., 9, 1116(1997). 15 Clark, I.J., Takeuchi, T., Ohtori, N., Sinclair, D.C., “Hydrothermal synthesis and characterisation of BaTiO3 fine powders: precursors, polymorphism and properties”, J. Mater. Chem., 9, 83(1999). 16 Ciftcl, E., Rahaman, M.N., “Hydrothermal precipitation and characterization of nanocrystalline BaTiO3 particles”, J. Mater. Sci., 36, 4875(2001). 17 Walton, R.I., Millange, F., Smith, R., Hansen, T.C., O’Hare, D., “Real time observation of the hydrothermal crystallization of barium titanate using in situ neutron powder diffraction”, J. Am. Chem. Soc., 123, 12547(2001). 18 Xu, H.,R., Gao, L., Guo, J.K., “Hydrothermal synthesis of tetragonal barium titanate from barium chloride and titanium tetrachloride under moderate conditions”, J. Am. Ceram. Soc., 85, 727(2002). 19 Mao, Y.B., Banerjee, S., Wong, S.S., “Hydrothermal synthesis of perovskite nanotubes”, Chem. Commun., 408(2003). 20 Nanni, P., Leoni, M., Buscaglia, V., Aliprandi, G., “Low-temperature aqueous preparation of barium meta-titanate powders”, J. Eur. Ceram. Soc., 14, 85(1994). 21 Her, Y.S., Matijevic, E., Chon, M., “Preparation of well-defined colloidal barium titanate crystals by the controlled double-jet precipitation”, J. Mater. Res., 10, 3106(1995). 22 Wade, S., Tsurumi,T., Chikamori, H., Noma, T., Suzuki, T., “Preparation of nm-sized BaTiO3 crystallites by a LTDS method using a highly concentrated aqueous solu-tion”, J. Cryst. Growth, 229, 433(2001). 23 Eckert, J.O.J., Hung-Houston, C.C., Gersten, B.L., Lencka, M.M., Riman, R.E., “Kinetics and mechanisms of hydrothermal synthesis of barium titanate”, J. Am. Ceram. Soc., 79, 2929(1996). 24 Zhao, L., Chien, A.T., Lange, F.F., Speck, J.S., “Microstructural development of BaTiO3 powders syn-thesized by aqueous methods”, J. Mater. Res., 11, 1325(1996). 25 Wang, X., Lee, B. I., Hu, M.Z., Payzant, E.A., Blow, D.A., “Mechanism of nanocrystalline BaTiO3 particle formation by hydrothermal refluxing synthesis”, J. Mater. Sci., 14, 495(2003). 26 Moon, J., Suvaci, E., Morrone, A., Costantino, S.A., Adair, J.H., “Formation mechanisms and morphological changes during the hydrothermal synthesis of BaTiO3 particles from a chemically modified, amorphous tita-nium (hydrous) oxide precursor”, J. Eur. Ceram. Soc., 23, 2153(2003). 27 Testino, A., Buscaglia, M.T., Buscaglia, V., Viviani, M., Bottino C., Nanni, P., “Kinetics and mechanism of aque-ous chemical synthesis of BaTiO3 particles”, Chem. Ma-ter., 16, 1536(2004). 28 Chen, J.F., Wang, Y.H., Guo, F., Wang, X.M., Zheng C., “Synthesis of nanoparticles with novel technology: High-gravity reactive precipitation”, Ind. Eng. Chem. Res., 39, 948(2000). 29 Lencka, M.M., Riman, R.E., “Thermodynamic modeling of hydrothermal synthesis of ceramic powders”, Chem. Mater., 5, 61(1993). 30 Lencka, M.M., Riman, R.E., “Hydrothermal synthesis of perovskite materials: thermodynamic modeling and ex-perimental verification”, Ferroelectrics, 151, 159(1994). 31 Lencka, M.M., Riman, R.E., “Thermodynamics of the hydrothermal synthesis of calcium titanate with reference to other alkaline-earth titanates”, Chem. Mater., 7, 18(1995). 32 MacLaren, I., Ponton, C.B., “A TEM and HREM study of particle formation during barium titanate synthesis in aqueous solution”, J. Eur. Ceram. Soc., 20, 1267(2000). 33 Shen, Z.G., Li, S.G., Liu, C.W., Zhang, J.W., Chen, J.F., “Low temperature one step synthesis of barium titanate: Thermodynamic modeling and experimental synthesis”, Chin. J. Chem. Eng., 13(2), 225(2005). 34 Dirksen, J.A., Ring, T.A., “Fundamentals of crystalliza-tion: kinetic effects on particle size distributions and morphology”, Chem. Eng. Sci., 46, 2389(1991). 35 Guo, K., Guo, F., Feng, Y.D., Chen, J.F., Zheng, C., “Synchronous visual and RTD study on liquid flow in rotating packed-bed contactor”, Chem. Eng. Sci., 55, 1699(2000). 36 Chen, J.F., Zheng, C., Chen, G.T., “Interaction of macro- and micromixing on particle size distribution in reactive precipitation”, Chem. Eng. Sci., 51, 1957(1996). 37 Chen, J.F., Shao, L., Guo, F., Wang, X.M., “Synthesis of nano-fibers of aluminum hydroxide in novel rotating packed bed reactor”, Chem. Eng. Sci., 58, 569(2003). 38 Chen, J.F., Li, Y.L., Wang, Y.H., Yun, J., Cao, D.P., “Preparation and characterization of zinc sulfide nanoparticles under high-gravity environment”, Mater. Res. Bull., 39, 185(2004). 39 Chen, J.F., Shao, L., Zhang, C.G., Chen, J.M., Chu, G.W., “Preparation of TiO2 nanoparticles by a rotating packed bed reactor”, J. Mater. Sci. Lett., 22, 437(2003). 40 Chen, J.F., Shen, Z.G., Liu, F.T., Liu, X.L., Yun, J., “Preparation and properties of barium titanate nanopow-der by conventional and high-gravity reactive precipita-tion methods”, Scr. Mater., 49, 509(2003). 41 Shen, Z.G., Shao, L., Chen, J.F., Yun, J., “Mass produc-tion of Ba1-xSrxTi1-yZryO3 (0≤x≤1, 0≤y≤0.5) nanopar-ticles”, Mater. Lett., 59, 2232 (2005).
|