1 Brackbill, J.U., Kothe, D.B., Zemach, C., “A continuum method for modeling surface tension”, J. Comput. Phys., 100, 335—354(1992). 2 Coward, A.V., Renardy, Y., Renardy, M.J., Richards, R., “Temporal evolution of periodic disturbances in two-layer Couette flow”, J. Comput. Phys., 132, 346—361(1997). 3 Rider, W.J., Kothe, D.B., “Reconstructing volume track-ing”, J. Comput. Phys., 141, 112—152(1998). 4 Lafaurie, B., Nardone, C., Scardovelli, R., Zaleski, S., Zanetti, G., “Modelling merging and fragmentation in multiphase flows with SURFER”, J. Comput. Phys., 113, 134—147(1994). 5 Osher, S., Sethian, J., “Fronts propagating with curvature dependent speed: Algorithms based on Hmilton-Jacobi formulations”, J. Comput. Phys., 79, 12—49(1988). 6 Hirt, C.W., Nichols, B.D., “Volume of fluid (VOF) method for the dynamics of free boundaries”, J. Comput. Phys., 39, 201—225(1981). 7 Kothe, D.B., Rider, W.J., Mosso, S.J., Brock, J.S., “Vol-ume tracking of interfaces having surface tension in two and three dimensions”, In: The 34th Aerospace Sciences Meeting and Exhitit, AIAA, Reno, Nevada (1996). 8 Popinet, S., Zaleski, S., “A front-tracking algorithm for accurate representation of surface tension”, Int. J. Numer. Meth. Fluids, 30, 775—793(1999) 9 Jamet, D., Torres, D., Brackbill, J.U., “On the theory and computation of surface tension: The elimination of para-sitic currents through energy conservation in the sec-ond-gradient method”, J. Comput. Phys., 182, 262—276(2002). 10 Renardy, Y., Renardy, M., “Prost: A parabolic reconstruc-tion of surface tension for the volume-of-fluid method”, J. Comput. Phys., 183, 400—421(2002). 11 Kang, M., Fedkiw, R.P., Liu, X.D., “A boundary condi-tion capturing method for multiphase incompressible flow”, J. Sci. Comput., 15, 323—360(2000). 12 Sussman, M., “A second order coupled level set and volume-of-fluid method for computing growth and col-lapse of vapor bubbles”, J. Comput. Phys., 187, 110—136(2003). 13 Cummins, S.J., Francois, M.M., Kothe, D.B., “Estimat-ing curvature from volume fractions”, Comput. Struct., 83, 425—434(2005). 14 Shin, S., Abdel-Khalik, S.I., Daru, V., Juric, D., “Accu-rate representation of surface tension using the level contour reconstruction method”, J. Comput. Phys., 203, 493—516(2005). 15 Shirani, E., Ashgriz, N., Mostaghimi, J., “Interface pres-sure calculation based on conservation of momentum for front capturing methods”, J. Comput. Phys., 203, 154—175(2005). 16 Yang, C., Mao, Z.S., “An improved level set approach to the simulation drop and bubble motion”, Chin. J. Chem. Eng., 10, 263—272(2002). 17 Bussmann, M., Mostaghimi, J., Chandra, S., “On a three-dimensional volume model of drop impact”, Phys. Fluids, 11, 1406—1417(1999). 18 van Doormaal, J.P., Raithby, G.D., “Enhancements of the SIMPLE method for prediction incompressible fluid flows”, Num. Heat Transfer, 7, 147—163(1984). 19 Patankar, S. V., Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington (1980). 20 Scardovelli, R., Zaleski, S., “Direct numerical simulation of free surface and interfacial flow”, Ann. Rev. Fluid Mech., 31, 567—603(1999). 21 Bhaga, D., Weber, M.E., “Bubbles in viscous liquids: Shapes, wakes and velocities”, J. Fluid Mech., 105, 61—85(1981).
|