›› 2015, Vol. 23 ›› Issue (3): 559-571.DOI: 10.1016/j.cjche.2013.10.001
• Chemical Engineering Thermodynamics • Previous Articles Next Articles
Alejandro Estrada-Baltazar1, Micael Gerardo Bravo-Sanchez1, Gustavo Arturo Iglesias-Silva1, Juan Francisco Javier Alvarado1, Edgar Omar Castrejon-Gonzalez1, Mariana Ramos-Estrada2
Received:
2013-05-29
Revised:
2013-10-08
Online:
2015-04-03
Published:
2015-03-28
Supported by:
Alejandro Estrada-Baltazar1, Micael Gerardo Bravo-Sanchez1, Gustavo Arturo Iglesias-Silva1, Juan Francisco Javier Alvarado1, Edgar Omar Castrejon-Gonzalez1, Mariana Ramos-Estrada2
通讯作者:
Alejandro Estrada-Baltazar
基金资助:
Alejandro Estrada-Baltazar, Micael Gerardo Bravo-Sanchez, Gustavo Arturo Iglesias-Silva, Juan Francisco Javier Alvarado, Edgar Omar Castrejon-Gonzalez, Mariana Ramos-Estrada. Densities and viscosities of binary mixtures of n-decane+1-pentanol,+1-hexanol,+1-heptanol at temperatures from 293.15 to 363.15 K and atmospheric pressure[J]. , 2015, 23(3): 559-571.
Alejandro Estrada-Baltazar, Micael Gerardo Bravo-Sanchez, Gustavo Arturo Iglesias-Silva, Juan Francisco Javier Alvarado, Edgar Omar Castrejon-Gonzalez, Mariana Ramos-Estrada. Densities and viscosities of binary mixtures of n-decane+1-pentanol,+1-hexanol,+1-heptanol at temperatures from 293.15 to 363.15 K and atmospheric pressure[J]. , 2015, 23(3): 559-571.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2013.10.001
[1] M. Bender, A. Heintz, Thermodynamics of 1-alkanol+n-alkane mixtures based on predictions of the ERAS model, Fluid Phase Equilib. 89 (1993) 197-215. [2] M. Costas, D. Patterson, Order destruction and order creation in binary mixtures of non-electrolytes, Thermochim. Acta 120 (1987) 161-181. [3] D. Gonzalez, C.A. Cerdeiriña, E. Carballo, L. Romani, Group definition inmolecular solution theories by quantum mechanical methods: application to 1-alkanol+nalkane mixtures, J. Phys. Chem. B 104 (2000) 11275-11282. [4] A. Liu, F. Kohler, L. Karrer, J. Gaubez, P. Spellucci, Amodel for the excess properties of I-alkanol+alkane mixtures containing chemical and physical terms, Pure Appl. Chem. 61 (1989) 1441-1452. [5] A. Liu, F. Kohler, Model for alkanol+alkane mixtures: Calculation of key systems, Fluid Phase Equilib. 89 (1993) 243-252. [6] C.G. Panayiotou, Thermodynamics of associated solutions. Mixtures of 1-alkanols, Fluid Phase Equilib. 56 (1990) 171-188. [7] J.A. González, I. García de la Fuente, J.C. Cobos, C. Casanova, A characterization of the aliphatic/hydroxyl interactions using a group contribution model (Disquac), Ber. Bunsenges. Phys. Chem. 95 (1991) 1658-1668. [8] C.A. Cerdeiriña, C.A. Tovar, E. Carballo, L. Romani, M.C. Delgado, L.A. Torres, M. Costas, Temperature dependence of the excess molar heat capacities for alcoholalkane mixtures. Experimental testing of the predictions from a two-state model, J. Phys. Chem. B 106 (2002) 185-191. [9] M. Costas, D. Patterson, Self-association of alcohols in inert solvents. Apparent heat capacities and volumes of linear alcohols in hydrocarbons, J. Chem. Soc. Faraday Trans. 1 (81) (1985) 635-654. [10] K. Moorthi, I. Nagata, Prediction of the excess heat capacities of 1-alkanol+alkane systems on the basis of pure-liquid properties, Fluid Phase Equilib. 72 (1992) 131-146. [11] M. Costas, M.C. Alonso, A. Heintz, Experimental and theoretical study of the apparent molar volumes of 1-alcohols in linear hydrocarbons, Ber. Bunsenges. Phys. Chem. 91 (1987) 184-190. [12] J. Gaube, L. Karrer, P. Spellucci, J. Gaube, L. Karrer, P. Spellucci, A study of the excess properties ofmixtures 1-alkanol/n-alkane using a generalized chemical theory, Fluid Phase Equilib. 33 (1987) 223-243. [13] A. Heintz, A new theoretical approach for predicting excess properties of alkanol/alkane mixtures, Ber. Bunsenges. Phys. Chem. 89 (1985) 172-181. [14] Ch. Ormanoudis, C. Panayiotou, Applications of the LFAS model to 1-alkanol+nalkane systems, Fluid Phase Equilib. 89 (1993) 217-228. [15] E. Carballo, J. Peleteiro, C.A. Cerdeiriña, C.A. Tovar, J.L. Legido, Ability of the Nitta-Chaomodel for the prediction of pressure and temperature dependence of the volumetric properties of n-alkane+1-alkanol systems, Fluid Phase Equilib. 133 (1997) 45-55. [16] J. Fernandez, L.J. Legido,M.I.P. Andrade, L. Pias, J. Ortega, Analysis of thermodynamic properties of 1-alkanol+n-alkane mixtures using the Nitta-Chao group contribution model, Fluid Phase Equilib. 55 (1990) 293-308. [17] C. Panayiotou, Applications of the LFAS theory to VLE and volumetric properties of 1-alkanol+n-alkane mixtures, Pure Appl. Chem. 61 (1989) 1453-1460. [18] J. Nath, J.G. Pandey, Binary mixtures of butanol+pentane,+hexane,+heptane,+octane,+2,2,4-trimethylpentane, and+carbon tetrachloride. 1. Excess molar volumes at 288.15 K and 298.15 K and refractive indexes at 298.15 K, J. Chem. Eng. Data 42 (1997) 128-131. [19] J. Nath, J.G. Pandey, Excess molar volumes and refractive indexes of heptanol+pentane,+hexane,+heptane,+octane, and +2,2,4-trimethylpentane, J. Chem. Eng. Data 42 (1997) 514-516. [20] J. Nath, J.G. Pandey, Excess molar volumes of heptan-1-ol+pentane,+hexane,+heptane,+octane, and +2,2,4-trimethylpentane at T=293.15 K, J. Chem. Eng. Data 42 (1997) 1137-1139. [21] J. Nath, Speeds of sound in and isentropic compressibilities of (n-butanol+npentane) at T=298.15 K, and (n-butanol+n-hexane, or n-heptane, or n-octane, or 2,2,4-trimethylpentane) at T=303.15 K, J. Chem. Thermodyn. 30 (1998) 885-895. [22] J. Nath, Speed of sound in and isentropic compressibilities of (n-heptanol+n-pentane, or n-hexane, or n-heptane, or n-octane) at T=293.15 K, J. Chem. Thermodyn. 30 (1998) 1385-1392. [23] J. Nath, Speeds of sound and isentropic compressibilities of (n-heptanol+npentane, or n-hexane, or n-heptane, or n-octane) at T=303.15 K, and of (nheptanol+2,2,4-trimethylpentane) at T=293.15 and 303.15 K, Fluid Phase Equilib. 175 (2000) 63-73. [24] A.J. Treszczanowicz, G.C. Benson, Excess volumes for n-alkanols+n-alkanes III. Binary mixtures of hexan-1-ol+n-pentane,+n-hexane,+n-octane, and+n-decane, J. Chem. Thermodyn. 12 (1980) 173-179. [25] A.J. Treszczanowicz, O. Kiyohara, G.C. Benson, Excess volumes for nalkanols+n-alkanes IV. Binary mixtures of decanol-1-ol+n-pentane,+nhexane,+n-octane,+n-decane, and+n-hexadecane, J. Chem. Thermodyn. 13 (1981) 253-260. [26] G.P. Dubey,M. Sharma, Acoustical and excess properties of {1-hexanol+n-hexane, or n-octane, or n-decane} at (298.15, 303.15, and 308.15) K, J. Mol. Liq. 142 (2008) 124-129. [27] J. Nath, Speeds of sound in and isentropic compressibilities of (n-butanol+npentane, or n-hexane, or n-heptane, or n-octane, or 1,1,3-trimethylpentane, or carbon tetrachloride) at T=293.15 K, J. Chem. Thermodyn. 29 (1997) 853-863. [28] A.H. Al-Dujaili, A.M. Awwad, Excess molar volumes of binary mixtures of an isomer of pentanol+n-alkane at 288.15, 298.15, 308.15 and 318.15 K, Fluid Phase Equilib. 55 (1990) 355-364. [29] J. Nath, Speeds of sound in and isentropic compressibilities of (n-octanol+nhexane, or n-heptane, or n-octane) at T=298.15 K, Fluid Phase Equilib. 203 (2002) 261-268. [30] A.H. Roux, G. Roux-Desgranges, J.-P.E. Grolier, Excess molar heat capacities and enthalpies for 1-alkanol+n-alkane binary mixtures. New measurements and recommended data, Fluid Phase Equilib. 89 (1993) 57-88. [31] B. Orbe, M. Iglesias, A. Rodríguez, J.M. Canosa, J. Tojo, Mixing properties of (methanol, ethanol, or 1-propanol) with (n-pentane, n-hexane, n-heptane and n-octane) at 298.15 K, Fluid Phase Equilib. 133 (1997) 213-227. [32] J. Nath, J.G. Pandey, Viscosities of binary liquid mixtures of butanol+pentane,+hexane,+heptane, and+octane at T 298.15 K, J. Chem. Eng. Data 42 (1997) 1133-1136. [33] R. Bravo, M. Pintos, A. Amigo, M. Gracia, Densities and viscosities of the binary mixtures decanol some n-alkanes at 298.15 K, Phys. Chem. Liq. 22 (1991) 245-253. [34] E.D. Totchasov, M.Yu. Nikiforov, O.V. Eliseeva, G.A. Al'per, The viscosity and density of the methanol+n-nonane, ethanol+n-nonane, and ethanol+n-decane systems, Russ. J. Phys. Chem. A 80 (2006) 1676-1679. [35] G.P. Dubey, M. Sharma, N. Dubey, Study of densities, viscosities, and speeds of sound of binary liquid mixtures of butan-1-ol with n-alkanes (C6, C8, and C10) at T=(298.15, 303.15, and 308.15) K, J. Chem. Thermodyn. 40 (2008) 309-320. [36] F.X. Feitosa, A.C.R. Caetano, T.B. Cidade, H.B. De Sant'Ana, Viscosity and density of binarymixtures of ethyl alcohol with n-alkanes (C6, C8, and C10), J. Chem. Eng. Data 54 (2009) 2957-2963. [37] N.V. Sastry,M.M. Raj, Densities, speeds of sound, viscosities, dielectric constants, and refractive indices for 1-heptanol+hexane and+heptanes at 303.15 and 313.15 K, J. Chem. Eng. Data 41 (1996) 612-618. [38] G.P. Dubey, M. Sharma, Study of molecular interactions in binary liquid mixtures of 1-octanol with n-hexane, n-octane, and n-decane using volumetric, viscometric, and acoustic properties, J. Chem. Thermodyn. 40 (2008) 991-1000. [39] G.P. Dubey, M. Sharma, Acoustic, thermodynamic, viscometric and volumetric studies in binary systems of 1-decanol with n-hexane, n-octane and n-decane with respect to temperature, J. Mol. Liq. 143 (2008) 109-114. [40] J.J. Christensen, R.M. Izatt, B.D. Stitt, R.W. Hanks, The excess enthalpies of seven ndecane+alcohol mixtures at 298.15 K, J. Chem. Thermodyn. 11 (1979) 261-266. [41] A. Amigo, J.L. Legido, R. Bravo, M.I. Paz-Andrade, Excess molar enthalpies of (heptan-1-ol+an n-alkane) at 298.15 and 308.15 K, J. Chem. Thermodyn. 21 (1989) 1207-1211. [42] L. Yun, W.Z. Long, S.X. Da, Z. Rui, Excess molar volumes of tributyl phosphate (TBP)+n-alkanol, n-alkanol+n-alkane measured with a modified continuousdilution dilatometer, Thermichim. Acta 123 (1988) 169-175. [43] H. Kaur, N.S. Samra, B.S. Mahl, J.R. Khurma, M. Bender, A. Heintz, Excess volumes of binary liquid mixtures of n-alkanols and cycloalkanols with n-alkanes and the theoretical treatment using the ERAS-model, Fluid Phase Equilib. 67 (1991) 241-257. [44] E.D. Totchasov, M.Yu. Nikiforov, G.A. Al'per, The viscosity of the methanol-n-decane system in the region of lown-decane concentrations, Russ. J. Phys. Chem. A 84 (2010) 950-953. [45] E.D. Totchasov, M.Yu. Nikiforov, G.A. Al'per, Viscosity of the systems methanoln-octane and ethanol-n-octane, Russ. J. Gen. Chem. 72 (2002) 1498-1500. [46] D.V. Ivlev,M.G. Kiselev, Solvophobic effects inmethanol-heptanemixtures, Russ. J. Phys. Chem. A 75 (2001) 71-74. [47] A. Estrada-Baltazar, A. De León-Rodríguez, K.R. Hall, M. Ramos-Estrada, G.A. Iglesias-Silva, Experimental densities and excess volumes for binary mixtures containing propionic acid, acetone, and water from283.15 to 323.15 K at atmospheric pressure, J. Chem. Eng. Data 48 (2003) 1425-1431. [48] X. Paredes, O. Fandiño, M.J.P. Comuñas, A.S. Pensado, J. Fernández, Study of the effects of pressure on the viscosity and density of diisodecyl phthalate, J. Chem. Thermodyn. 41 (2009) 1007-1015. [49] J.F. Kincaid, H. Eyring, A.E. Stearn, The theory of absolute reaction rates and its application to viscosity and diffusion in the liquid state, Chem. Rev. 28 (2) (1941) 301-365. [50] O. Redlich, A.T. Kister, Algebraic representation of thermodynamic properties and the classification of solutions, Ind. Eng. Chem. 40 (1948) 345-348. [51] SAS, The SAS System for Windows, Release 6.08, SAS Institute Inc., Cary, N.C, 1991. [52] H. Eyring, M.S. Jhon, Significant Liquid Structure, Wiley, New York, 1960. [53] H. Eyring, Viscosity, plasticity, and diffusion as examples of absolute reaction rates, J. Chem. Phys. 4 (1936) 283-291. [54] M.A. Chowdhury, M.A. Majid, M.A. Saleh, Volumetric and viscometric behavior of binary systems: 1-Hexanol+hydrocarbons, J. Chem. Thermodyn. 33 (2001) 347-360. [55] J. Peleterio, J. Troncoso, D. González-Salgado, J.L. Valencia, M. Souto-Caride, L. Romani, Excess isobaric molar heat capacities and excess molar volumes for ethanol+ndecane and n-undecane systems, J. Chem. Thermodyn. 37 (2005) 935-940. [56] A.J. Treszczanowicz, G.C. Benson, Excess volumes for n-alkanols+n-alkanes. I. binary mixtures of methanol, ethanol, n-propanol, and n-butanol+heptane, J. Chem. Thermodyn. 9 (1977) 1189-1197. [57] A.J. Treszczanowicz, G.C. Benson, Excess volumes for n-alkanols+n-akanes. II. Binary mixtures of n-pentanol, n-hexanol, n-octanol and n-decanol+n-heptane, J. Chem. Thermodyn. 10 (1978) 967-974. [58] K. Rajagopal, S. Chenthilnath, Excess parameter studies on binary liquid mixtures of 2-methyl-2-propanol with aliphatic nitriles at different temperatures, J. Mol. Liq. 160 (2011) 72-80. [59] V.K. Misra, I. Vibhu, R. Singh, M. Gupta, J.P. Shukla, Ultrasonic velocity, viscosity and excess properties of binary mixture of dimethyl sulphoxide with propionic acid and n-butyric acid, J. Mol. Liq. 135 (2007) 166-169. [60] M. Gupta, I. Vibhu, J.P. Shukla, Ultrasonic velocity, viscosity and excess properties of binary mixtures of tetrahydrofuran with 1-propanol and 2-propanol, Fluid Phase Equilib. 244 (2006) 26-32. [61] H. Iloukhani, Z. Rostami, Measurement of some thermodynamic and acoustic properties of binary solutions of N,N-dimethylformamide with 1-alkanols at 30℃ and comparison with theories, J. Solut. Chem. 32 (2003) 451-462. [62] R. Fort, W.R. Moore, Viscosities of binary liquid mixtures, Trans. Faraday Soc. 62 (1966) 1112-1119. [63] R.P. Singh, C.P. Sinha, Viscosities and activation energies of viscous flow of the binary mixtures of n-hexane with toluene, chlorobenzene, and 1-hexanol, J. Chem. Eng. Data 29 (1984) 132-135. [64] L. Su, H. Wang, Volumetric properties of dichloromethane with aniline or nitrobenzene at different temperatures: a theoretical and experimental study, J. Chem. Thermodyn. 41 (2009) 315-322. [65] Y. Mahan, T.T. Teng, L.G. Hepler, A.E. Mather, Densities, excess molar volumes, and partial molar volumes for binary mixtures of water with monoethanolamine, diethanolamine, and triethanolamine from 25 to 80℃, J. Solut. Chem. 23 (1994) 195-206. [66] S.J. Peng, H.Y. Hou, D.W. Yang, S.T. Liu, A study of volumetric properties of binary mixtures of N,N-diethylformamide with aromatic hydrocarbon at different temperatures, J. Mol. Liq. 139 (2008) 98-103. [67] J.E. Desnoyers, G. Perron, Treatment of excess thermodynamic quantities for liquid mixtures, J. Solut. Chem. 26 (1997) 749-756. [68] D.C. Landaverde-Cortes, G.A. Iglesias-Silva, M. Ramos-Estrada, K.R. Hall, Densities and viscosities of MTBE+nonane or decane at p=0.1 MPa from (273.15 to 363.15) K, J. Chem. Eng. Data 53 (2008) 288-292. [69] T.S. Banipal, S.K. Garg, J.C. Ahluwalia, Heat capacities and densities of liquid n-octane, n-nonane, n-decane, and n-hexadecane at temperatures from 318.15 K to 373.15 K and at pressures up to 10 MPa, J. Chem. Thermodyn. 23 (1991) 923-931. [70] A.J. Queimada, I.M. Marrucho, J.A.P. Coutinho, E.H. Stenby, Viscosity and liquid density of asymmetric n-alkane mixtures: measurement and modeling, Int. J. Thermophys. 26 (2005) 47-61. [71] B. González, A. Domínguez, J. Tojo, Dynamic viscosities of 2-butanol with alkanes (C6, C8, and C12) at several temperatures, J. Chem. Thermodyn. 36 (2004) 267-275. [72] H. Iloukhani, M. Rezaei-Sameti, J. Basiri-Parsa, S. Azizian, Studies of dynamic viscosity and Gibbs energy of activation of binary mixtures of methylcyclohexane with n-alkanes (C5-C10) at various temperatures, J. Mol. Liq. 126 (2006) 117-123. [73] J.G. Baragi, M.I. Aralaguppi, M.Y. Kariduraganavar, S.S. Kulkarni, A.S. Kittur, T.M. Aminabhavi, Excess properties of the binary mixtures of methylcyclohexane+alkanes (C6 to C12) at T=298.15 K to T=308.15 K, J. Chem. Thermodyn. 38 (2006) 75-83. [74] H.E. Hogan, R.B. Torres, Volumetric and viscometric properties of binarymixtures of [methyl tert-butyl ether (MTBE)+alcohol] at several temperatures and p=0.1 MPa: Experimental results and application of the ERAS model, J. Chem. Thermodyn. 43 (2011) 1104-1134. [75] M.E.F.R. Holgado, C.R. de Schaefer, E.L. Arancibia, Densities and viscosities of binary mixtures of polyethylene glicol 350 monomethyl ether with n-butanol and npentanol and tetraethylene glycol dimethyl ethers with n-propanol, n-butanol, and n-pentanol from 278.15 K to 318.15 K, J. Chem. Eng. Data 47 (2002) 144-148. [76] E. Romano, J.L. Trenzado, E. González, J.S. Matos, L. Segade, E. Jiménez, Thermophysical properties of four binary dimethyl carbonate+1-alcohol systems at 288.15-313.15 K, Fluid Phase Equilib. 211 (2003) 219-240. [77] M. Hasan, A.P. Hiray, U.B. Kadam, D.F. Shirude, K.J. Kurhe, A.B. Sawat, Densities, viscosities, speeds of sound, FT-IR and H-NMR studies of binarymixtures of n-butyl acetate with ethanol, propan-1-ol, butan-1-ol and pentan-1-ol at 298.15, 303.15, 308.15 and 313.15 K, J. Solut. Chem. 40 (2011) 415-429. [78] U. Domanska, Z. Zolek-Tryznowska, Measurements of the density and viscosity of binary mixtures of (hyper-branched polymer, B-H2004+1-butanol, or 1-hexanol, or 1-octanol, or methyl tert-butyl ether), J. Chem. Thermodyn. 42 (2010) 651-658. [79] E. Zorebski, A. Waligóra, Densities, excess molar volumes, and isobaric thermal expansibilities for 1,2-ethanediol+1-butanol, or 1-hexanol, or 1-octanol in the temperature range from (293.15 to 313.15) K, J. Chem. Eng. Data 53 (2008) 591-595. [80] Z. Shan, A.F.A. Asfour, Viscosities and densities of nine binary 1-alkanol systems at 293.15 K and 298.15 K, J. Chem. Eng. Data 44 (1999) 118-123. [81] A.S. Al-Jimaz, J.A. Al-Kandary, A.-H.M. Abdul-Latif, Acoustical and excess properties of {chlorobenzene+1-hexanol, or 1-heptanol, or 1-octanol, or 1-nonanol, or 1-decanol} a (298.15, 303.15, 308.15, and 313.15) K, J. Chem. Eng. Data 52 (2007) 206-214. |
[1] | Hae-Kyun Park, Dong-Hyuk Park, Bum-Jin Chung. Influence of the electrolyte conductivity on the critical current density and the breakdown voltage [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 169-175. |
[2] | Tinghao Jia, Yunbo Yu, Qing Liu, Yao Yang, Ji-Jun Zou, Xiangwen Zhang, Lun Pan. Theoretical and experimental study on the inhibition of jet fuel oxidation by diarylamine [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 225-232. |
[3] | Songsong Wang, Hong Li, Changyuan Tao, Renlong Liu, Yundong Wang, Zuohua Liu. Study on cavern evolution and performance of three mixers in agitation of yield-pseudoplastic fluids [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 111-122. |
[4] | Xianglin Liu, Minjie Xu, Chenxi Cao, Zixu Yang, Jing Xu. Effects of zinc on χ-Fe5C2 for carbon dioxide hydrogenation to olefins: Insights from experimental and density function theory calculations [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 206-214. |
[5] | Yifeng Chen, Hang Yu, Jingjing Chen, Xiaohua Lu, Xiaoyan Ji. Viscous behavior of 1-hexyl-methylimidazolium bis(trifluoromethylsulfonyl)imide/titanium dioxide/polyethylene glycol [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 280-287. |
[6] | Baodong Zhao, Yinglei Wang, Fulei Gao, Yajing Liu, Weixiao Liu, Feng Ding. Understanding the alkyl effect of geminal dinitropropyl ester energetic plasticizers on hydroxyl terminated polybutadiene (HTPB): Simultaneous tuning on low temperature behavior and processability [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 364-371. |
[7] | Yang Liu, Qiu Han, Guiliang Li, Haibo Lin, Fu Liu, Gang Deng, Dingfeng Lv, Weijie Sun. Purifying chylous plasma by precluding triglyceride via carboxylated polyethersulfone microfiltration membrane [J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 130-139. |
[8] | Fenfen You, Qing-Hong Shi. In situ investigation of lysozyme adsorption into polyelectrolyte brushes by quartz crystal microbalance with dissipation [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 106-115. |
[9] | Yaqi Ren, Shuqian Xia. Synthesis and mechanism analysis of a new oil soluble viscosity reducer for flow improvement of Chenping heavy oil [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 58-67. |
[10] | Anil Kumar Nain. Study of intermolecular interactions in binary mixtures of methyl acrylate with benzene and methyl substituted benzenes at different temperatures: An experimental and theoretical approach [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 212-238. |
[11] | Liuting Zhang, Haijie Yu, Zhiyu Lu, Changhao Zhao, Jiaguang Zheng, Tao Wei, Fuying Wu, Beibei Xiao. The effect of different Co phase structure (FCC/HCP) on the catalytic action towards the hydrogen storage performance of MgH2 [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 343-352. |
[12] | Li Ma, Yongjin Cui, Lin Sheng, Chencan Du, Jian Deng, Guangsheng Luo. Determination of interfacial tension and viscosity under dripping flow in a step T-junction microdevice [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 210-218. |
[13] | Qingjun Zhang, Pengyuan Shi, Xigang Yuan, Youguang Ma, Aiwu Zeng. Direct carboxylation of thiophene with CO2 in the solvent-free carboxylate-carbonate molten medium: Experimental and mechanistic insights [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 264-282. |
[14] | Wei-Qi Yan, Yi-An Zhu, Xing-Gui Zhou, Wei-Kang Yuan. Rational design of heterogeneous catalysts by breaking and rebuilding scaling relations [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 22-28. |
[15] | Jipeng Li, Huan Xu, Jingqi Wang, Yujun Wang, Diannan Lu, Jichang Liu, Jianzhong Wu. Theoretical insights on the hydration of quinones as catholytes in aqueous redox flow batteries [J]. Chinese Journal of Chemical Engineering, 2021, 37(9): 72-78. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||