[1] J.D.Wang, Y.C. Zhai, X.Y. Shen, Alumina extraction from de-silicate fly ash with lime sintering process, Light Met. 6 (2009) 14-16. [2] L.S. Li, Y.Y. Liu, Y.C. Zhai, Y.Wu, J.D.Wang, Alumina extraction from fly ash by sulfuric acid calcinations, J. North. Univ. 30 (S2) (2009) 169-172. [3] K. Gborphlip, S.J. Hooque, Q. Charles, Dissolution behavior of Fe, Co, and Ni from non-ferrous smelter slag in aqueous sulphurdioxide, Hydrometallurgy 81 (2006) 130-141. [4] G.H. Bai, Y.H. Qiao, B. Shen, S.L. Chen, Thermal decomposition of coal fly ash by concentrated sulfuric acid and alumina extraction process based on it, Fuel Process. Technol. 92 (2011) 1213-1219. [5] H. Liu, V.G. Papanglak, Thermodynamic equilibrium of the O2-ZnSO4-H2SO4-H2O system from 25 to 250℃, Fluid Phase Equilib. 234 (2005) 122-130. [6] R.L. Fang, S. Lu, X.B. Xie, The study of high-purity super-fine alumina powder preparation with fly ash, Environ. Eng. 5 (2003) 40-42. [7] H. Zhao, S. Lu, The study of high-purity super-fine alumina powder preparation with fly ash, Compr. Util. Fly Ash 6 (2002) 8-10. [8] S. Lu, R.L. Fang, H. Zhao, The study of high-purity super-fine alumina powder recovered from fly ash by lime sintering self-powder method, Fly Ash 1 (2003) 15-17. [9] Y.R. Ren, Z.K. Zhu, D.L. Xu, P.X. Fu, The study of high-purity alumina preparation by thermal decomposition of aluminum ammonium sulfate, Inorg. Chem. Ind. 6 (1991) 21-25. [10] C. Chen, L.B. Evans, A local composition model for the excess Gibbs energy of aqueous electrolyte systems, AIChE J. 32 (1986) 444-454. [11] H.C. Park, Y.J. Park, R. Stevens, Synthesis of alumina from purity alum derived from coal fly ash, Mater. Sci. Eng. 367 (2004) 166-170. [12] L.S. Li, Y.C. Zhai, J.G. Qin, Y.Wu, Y.Y. Liu, Extracting high-purity alumina from fly ash, J. Chem. Ind. Eng. 57 (9) (2006) 2189-2193 (in Chinese). [13] X.L. Jin, T. j Peng, H.J. Sun, Mineral composition and variation rule of calcinations products of ammonia sulfate and fly ash, Acta Mieralogica Sinica 33 (2) (2013) 147-151. [14] C.S. Fu, Non-ferrous Metal Principle, Metallurgical Industry Press, Beijing, 1993. [15] K. Sun, Macro reaction Kinetics and Its Analytic Method, Metallurgical Industry Press, Beijing, 1998. [16] A.M. Ginstling, B.I. Brounshtein, Diffusion kinetics of reaction in spherical particles, Russ. J. Appl. Chem. 23 (12) (1950) 1327-1338. [17] D.S. Abrams, J.M. Prausnitz, Statistical thermodynamics of liquid mixtures: A new expression for the excess Gibbs energy of partly or completely miscible systems, AIChE J. 21 (1975) 116-128. [18] H.G. Li, The Principle of Metallurgy, Science Press, Beijing, 2005. [19] Z.Y. Zhang, J.H. Peng, Z.B. Zhang, Leaching zinc fromspent catalyst: Process optimization using response surface methodology, J. Hazard. Mater. 176 (2010) 1113-1117. [20] A. Haghtalab, V.G. Papanglakis, X. Zhu, The electrolyte NRTL model and speciation approach as applied to multicomponent aqueous solutions of H2SO4, Fe2(SO4)3, MgSO4 and Al2(SO4)3 at 230-270℃, Fluid Phase Equilib. 220 (2004) 199-209. [21] K. Thomsen, P. Rasmussen, R. Gani, Correlation and prediction of thermal properties and phase behavior for a class of aqueous electrolyte systems, Chem. Eng. Sci. 51 (1996) 3675-3683. [22] S.J.Wu, X. Yu, Z.H.Hu, L.L. Zhang, Optimizing aerobic biodegradationof dichloromethane using response surface methodology, J. Environ. Sci. 21 (9) (2009) 1276-1283. [23] H. Liu, V.G. Papangelakis, Chemical modeling of high temperature aqueous processes, Hydrometallurgy 79 (2005) 48-61. [24] K. Ravikumar, K. Pakshirajan, T. Swaminathan, K. Balu, Optimization of batch process parameters using response surface methodology for dye removal by a novel adsorbent, Chem. Eng. 105 (2005) 131-138. [25] L.S. Li, Y.Y. Liu, Thermodynamics of extracting alumina from fly ash by ammonium sulfate calcinations process, Light Met. 9 (2009) 12-14. |