[1] A. Kubacka, M. Fernandez-Garcia, G. Colon, Advanced nanoarchitectures for solar photocatalytic applications, Chem. Rev. 112(3) (2012) 1555-1614.[2] M.R. Hoffmann, S.T. Martin, W.Y. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev. 95(1) (1995) 69-96.[3] M.A. Henderson, A surface science perspective on TiO2 photocatalysis, Surf. Sci. Rep. 66(6-7) (2011) 185-297.[4] J. Marugan, R. Van Grieken, O.M. Alfano, A.E. Cassano, Optical and physicochemical properties of silica-supported TiO2 photocatalysts, AIChE J. 52(8) (2006) 2832-2843.[5] W.X. Zhang, G.D. Chen, Z.H. Yang, C.Y. Zeng, A novel approach to well-aligned TiO2 nanotube arrays and their enhanced photocatalytic performances, AIChE J. 59(6) (2013) 2134-2144.[6] H.Q. Sun, S.Z. Liu, S.M. Liu, S.B. Wang, A comparative study of reduced graphene oxide modified TiO2, ZnO and Ta2O5 in visible light photocatalytic/photochemical oxidation of methylene blue, Appl. Catal., B 146(SI) (2014) 162-168.[7] H.Q. Sun, R. Ullah, S.H. Chong,H.M. Ang,M.O. Tade, S.B.Wang, Room-light-induced indoor air purification using an efficient Pt/N-TiO2 photocatalyst, Appl. Catal., B 108(1-2) (2011) 127-133.[8] H.Q. Sun, Y. Bai, H.J. Liu,W.Q. Jin, N.P. Xu, G.J. Chen, B.Q. Xu, Mechanism of nitrogenconcentration dependence on pH value:experimental and theoretical studies on nitrogen-doped TiO2, J. Phys. Chem. C 112(34) (2008) 13304-13309.[9] H.Q. Sun, Y. Bai, Y.P. Cheng, W.Q. Jin, N.P. Xu, Preparation and characterization of visible-light-driven carbon-sulfur-codoped TiO2 photocatalysts, Ind. Eng. Chem. Res. 45(14) (2006) 4971-4976.[10] H.Q. Sun, S.B.Wang, H.M. Ang, M.O. Tade, Q. Li, Halogen element modified titanium dioxide for visible light photocatalysis, Chem. Eng. J. 162(2) (2010) 437-447.[11] X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nat. Mater. 8(1) (2009) 76-80.[12] K. Schwinghammer,M.B. Mesch, V. Duppel, C. Ziegler, J. Senker, B.V. Lotsch, Crystalline carbon nitride nanosheets for improved visible-light hydrogen evolution, J. Am. Chem. Soc. 136(5) (2014) 1730-1733.[13] S.B. Yang, Y.J. Gong, J.S. Zhang, L. Zhan, L.L. Ma, Z.Y. Fang, R. Vajtai, X.C. Wang, P.M. Ajayan, Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light, Adv. Mater. 25(17) (2013) 2452-2456.[14] Z.Z. Lin, X.C.Wang, Nanostructure engineering and doping of conjugated carbon nitride semiconductors for hydrogen photosynthesis, Angew. Chem. Int. Ed. 52(6) (2013) 1735-1738.[15] Y.S. Jun, J. Park, S.U. Lee, A. Thomas, W.H. Hong, G.D. Stucky, Three-dimensional macroscopic assemblies of low-dimensional carbon nitrides for enhanced hydrogen evolution, Angew. Chem. Int. Ed. 52(42) (2013) 11083-11087.[16] Y. Wang, R. Shi, J. Lin, Y. Zhu, Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4, Energy Environ. Sci. 4(8) (2011) 2922-2929.[17] Y. Zhang, T. Mori, J. Ye, M. Antonietti, Phosphorus-doped carbon nitride solid:Enhanced electrical conductivity and photocurrent generation, J. Am. Chem. Soc. 132(18) (2010) 6294-6295.[18] S. Chu, Y.Wang, Y. Guo, J.Y. Feng, C.C. Wang,W.J. Luo, X.X. Fan, Z.G. Zou, Band structure engineering of carbon nitride:in search of a polymer photocatalyst with high photooxidation property, ACS Catal. 3(5) (2013) 912-919.[19] Z.Y. Jin, N. Murakami, T. Tsubota, T. Ohno, Complete oxidation of acetaldehyde over a composite photocatalyst of graphitic carbon nitride and tungsten(VI) oxide under visible-light irradiation, Appl. Catal., B 150(2014) 479-485.[20] K. Katsumata, R. Motoyoshi, N. Matsushita, K. Okada, Preparation of graphitic carbon nitride (g-C3N4)/WO3 composites and enhanced visible-light-driven photodegradation of acetaldehyde gas, J. Hazard. Mater. 260(2013) 475-482.[21] W. Liu, M.Wang, C. Xu, S. Chen, Facile synthesis of g-C3N4/ZnO composite with enhanced visible light photooxidation and photoreduction properties, Chem. Eng. J. 209(2012) 386-393.[22] L. Ge, C. Han, J. Liu, In situ synthesis and enhanced visible light photocatalytic activities of novel PANI-g-C3N4 composite photocatalysts, J. Mater. Chem. 22(23) (2012) 11843-11850.[23] L. Ge, C. Han, X. Xiao, L. Guo, Synthesis and characterization of composite visible light active photocatalystsMoS2-g-C3N4with enhanced hydrogen evolution activity, Int. J. Hydrog. Energy 38(17) (2013) 6960-6969.[24] Y.L. Tian, B.B. Chang, J.L. Lu, J. Fu, F.N. Xi, X.P. Dong, Hydrothermal synthesis of graphitic carbon nitride-Bi2WO6 heterojunctions with enhanced visible light photocatalytic activities, ACS Appl. Mater. Interfaces 5(15) (2013) 7079-7085.[25] S.M.Wang, D.L. Li, C. Sun, S.G. Yang, Y. Guan, H. He, Synthesis and characterization of g-C3N4/Ag3VO4 composites with significantly enhanced visible-light photocatalytic activity for triphenylmethane dye degradation, Appl. Catal., B 144(2014) 885-892.[26] Y.M. He, L.H. Zhang, X.X.Wang, Y. Wu, H.J. Lin, L.H. Zhao,W.Z.Weng, H.L.Wan,M.H. Fan, Enhanced photodegradation activity of methyl orange over Z-scheme type MoO3-g-C3N4 composite under visible light irradiation, RSC Adv. 4(26) (2014) 13610-13619.[27] C.C. Han, L. Ge, C.F. Chen, Y.J. Li, X.L. Xiao, Y.N. Zhang, L.L. Guo, Novel visible light induced Co3O4-g-C3N4 heterojunction photocatalysts for efficient degradation of methyl orange, Appl. Catal., B 147(2014) 546-553.[28] B. Chai, T. Peng, J. Mao, K. Li, L. Zan, Graphitic carbon nitride (g-C3N4)-Pt-TiO2 nanocomposite as an efficient photocatalyst for hydrogen production under visible light irradiation, Phys. Chem. Chem. Phys. 14(48) (2012) 16745-16752.[29] C. Miranda, H. Mansilla, J. Yanez, S. Obregon, G. Colon, Improved photocatalytic activity of g-C3N4/TiO2 composites prepared by a simple impregnation method, J. Photochem. Photobiol. A 253(2013) 16-21.[30] K. Kondo, N. Murakami, C. Ye, T. Tsubota, T. Ohno, Development of highly efficient sulfur-doped TiO2 photocatalysts hybridized with graphitic carbon nitride, Appl. Catal., B 142(2013) 362-367.[31] S.C. Yan, Z.S. Li, Z.G. Zou, Photodegradation performance of g-C3N4 fabricated by directly heating melamine, Langmuir 25(17) (2009) 10397-10401.[32] L. Ge, C. Han, J. Liu, Y. Li, Enhanced visible light photocatalytic activity of novel polymeric g-C3N4 loaded with Ag nanoparticles, Appl. Catal., A 409(2011) 215-222.[33] N. Boonprakob,N.Wetchakun, S. Phanichphant, D.Waxler, P. Sherrell, A.Nattestad, J. Chen, B. Inceesungvorn, Enhanced visible-light photocatalytic activity of g-C3N4/TiO2 films, J. Colloid Interface Sci. 417(2014) 402-409.[34] N.E.Mircescu,M. Oltean, V. Chis, N. Leopold, FTIR, FT-Raman, SERS and DFT study on melamine, Vib. Spectrosc. 62(2012) 165-171.[35] J. Liu, T. Zhang, Z.Wang, G. Dawson,W. Chen, Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity, J. Mater. Chem. 21(38) (2011) 14398-14401.[36] K. Gibson, J. Glaser, E. Milke, M. Marzini, S. Tragl, M. Binnewies, H.A. Mayer, H.J. Meyer, Preparation of carbon nitride materials by polycondensation of the singlesource precursor aminodichlorotriazine (ADCT), Mater. Chem. Phys. 112(1) (2008) 52-56.[37] Y. Zhao, Z. Liu,W. Chu, L. Song, Z. Zhang, D. Yu, Y. Tian, S. Xie, L. Sun, Large-scale synthesis of nitrogen-rich carbon nitride microfibers by using graphitic carbon nitride as precursor, Adv. Mater. 20(9) (2008) 1777-1778.[38] H. Yan, H. Yang, TiO2-g-C3N4 composite materials for photocatalytic H2 evolution under visible light irradiation, J. Alloys Compd. 509(4) (2011) L26-L29.[39] Y. Zhang, J. Liu, G. Wu,W. Chen, Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production, Nanoscale 4(17) (2012) 5300-5303.[40] Q. Xiang, J. Yu, M. Jaroniec, Preparation and enhanced visible-light photocatalytic H2 production activity of graphene/C3N4 composites, J. Phys. Chem. C 115(15) (2011) 7355-7363.[41] X. Zhou, F. Peng, H. Wang, H. Yu, Y. Fang, Carbon nitride polymer sensitized TiO2 nanotube arrays with enhanced visible light photoelectrochemical and photocatalytic performance, Chem. Commun. 47(37) (2011) 10323-10325.[42] S.S. Zhao, S. Chen, H.T. Yu, X. Quan, g-C3N4/TiO2 hybrid photocatalyst with wide absorption wavelength range and effective photogenerated charge separation, Sep. Purif. Technol. 99(2012) 50-54.[43] K. Ikeda, H. Sakai, R. Baba, K. Hashimoto, A. Fujishima, Photocatalytic reactions involving radical chain reactions using microelectrodes, J. Phys. Chem. B 101(14) (1997) 2617-2620.[44] W. Kubo, T. Tatsuma, Mechanisms of photocatalytic remote oxidation, J. Am. Chem. Soc. 128(50) (2006) 16034-16035. |