Chin.J.Chem.Eng. ›› 2015, Vol. 23 ›› Issue (8): 1326-1334.DOI: 10.1016/j.cjche.2015.05.003
• CATALYSIS, KINETICS AND REACTION ENGINEERING • Previous Articles Next Articles
Gaixue Song1, Zhenyu Chu1, Wanqin Jin1, Hongqi Sun2
Received:
2014-10-21
Revised:
2015-05-06
Online:
2015-09-26
Published:
2015-08-28
Contact:
Wanqin Jin, Hongqi Sun
Supported by:
Supported by the Innovative Research Team Programby the Ministry of Education of China (IRT13070), the Nature Science Foundation of Jiangsu Province (BK2012423, BK20130925), and the Opening Project of State Key Laboratory of Materials-Oriented Chemical Engineering of China (KL13-02).
Gaixue Song1, Zhenyu Chu1, Wanqin Jin1, Hongqi Sun2
通讯作者:
Wanqin Jin, Hongqi Sun
基金资助:
Supported by the Innovative Research Team Programby the Ministry of Education of China (IRT13070), the Nature Science Foundation of Jiangsu Province (BK2012423, BK20130925), and the Opening Project of State Key Laboratory of Materials-Oriented Chemical Engineering of China (KL13-02).
Gaixue Song, Zhenyu Chu, Wanqin Jin, Hongqi Sun. Enhanced performance of g-C3N4/TiO2 photocatalysts for degradation of organic pollutants under visible light[J]. Chin.J.Chem.Eng., 2015, 23(8): 1326-1334.
Gaixue Song, Zhenyu Chu, Wanqin Jin, Hongqi Sun. Enhanced performance of g-C3N4/TiO2 photocatalysts for degradation of organic pollutants under visible light[J]. Chinese Journal of Chemical Engineering, 2015, 23(8): 1326-1334.
[1] A. Kubacka, M. Fernandez-Garcia, G. Colon, Advanced nanoarchitectures for solar photocatalytic applications, Chem. Rev. 112(3) (2012) 1555-1614. [2] M.R. Hoffmann, S.T. Martin, W.Y. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev. 95(1) (1995) 69-96. [3] M.A. Henderson, A surface science perspective on TiO2 photocatalysis, Surf. Sci. Rep. 66(6-7) (2011) 185-297. [4] J. Marugan, R. Van Grieken, O.M. Alfano, A.E. Cassano, Optical and physicochemical properties of silica-supported TiO2 photocatalysts, AIChE J. 52(8) (2006) 2832-2843. [5] W.X. Zhang, G.D. Chen, Z.H. Yang, C.Y. Zeng, A novel approach to well-aligned TiO2 nanotube arrays and their enhanced photocatalytic performances, AIChE J. 59(6) (2013) 2134-2144. [6] H.Q. Sun, S.Z. Liu, S.M. Liu, S.B. Wang, A comparative study of reduced graphene oxide modified TiO2, ZnO and Ta2O5 in visible light photocatalytic/photochemical oxidation of methylene blue, Appl. Catal., B 146(SI) (2014) 162-168. [7] H.Q. Sun, R. Ullah, S.H. Chong,H.M. Ang,M.O. Tade, S.B.Wang, Room-light-induced indoor air purification using an efficient Pt/N-TiO2 photocatalyst, Appl. Catal., B 108(1-2) (2011) 127-133. [8] H.Q. Sun, Y. Bai, H.J. Liu,W.Q. Jin, N.P. Xu, G.J. Chen, B.Q. Xu, Mechanism of nitrogenconcentration dependence on pH value:experimental and theoretical studies on nitrogen-doped TiO2, J. Phys. Chem. C 112(34) (2008) 13304-13309. [9] H.Q. Sun, Y. Bai, Y.P. Cheng, W.Q. Jin, N.P. Xu, Preparation and characterization of visible-light-driven carbon-sulfur-codoped TiO2 photocatalysts, Ind. Eng. Chem. Res. 45(14) (2006) 4971-4976. [10] H.Q. Sun, S.B.Wang, H.M. Ang, M.O. Tade, Q. Li, Halogen element modified titanium dioxide for visible light photocatalysis, Chem. Eng. J. 162(2) (2010) 437-447. [11] X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nat. Mater. 8(1) (2009) 76-80. [12] K. Schwinghammer,M.B. Mesch, V. Duppel, C. Ziegler, J. Senker, B.V. Lotsch, Crystalline carbon nitride nanosheets for improved visible-light hydrogen evolution, J. Am. Chem. Soc. 136(5) (2014) 1730-1733. [13] S.B. Yang, Y.J. Gong, J.S. Zhang, L. Zhan, L.L. Ma, Z.Y. Fang, R. Vajtai, X.C. Wang, P.M. Ajayan, Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light, Adv. Mater. 25(17) (2013) 2452-2456. [14] Z.Z. Lin, X.C.Wang, Nanostructure engineering and doping of conjugated carbon nitride semiconductors for hydrogen photosynthesis, Angew. Chem. Int. Ed. 52(6) (2013) 1735-1738. [15] Y.S. Jun, J. Park, S.U. Lee, A. Thomas, W.H. Hong, G.D. Stucky, Three-dimensional macroscopic assemblies of low-dimensional carbon nitrides for enhanced hydrogen evolution, Angew. Chem. Int. Ed. 52(42) (2013) 11083-11087. [16] Y. Wang, R. Shi, J. Lin, Y. Zhu, Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4, Energy Environ. Sci. 4(8) (2011) 2922-2929. [17] Y. Zhang, T. Mori, J. Ye, M. Antonietti, Phosphorus-doped carbon nitride solid:Enhanced electrical conductivity and photocurrent generation, J. Am. Chem. Soc. 132(18) (2010) 6294-6295. [18] S. Chu, Y.Wang, Y. Guo, J.Y. Feng, C.C. Wang,W.J. Luo, X.X. Fan, Z.G. Zou, Band structure engineering of carbon nitride:in search of a polymer photocatalyst with high photooxidation property, ACS Catal. 3(5) (2013) 912-919. [19] Z.Y. Jin, N. Murakami, T. Tsubota, T. Ohno, Complete oxidation of acetaldehyde over a composite photocatalyst of graphitic carbon nitride and tungsten(VI) oxide under visible-light irradiation, Appl. Catal., B 150(2014) 479-485. [20] K. Katsumata, R. Motoyoshi, N. Matsushita, K. Okada, Preparation of graphitic carbon nitride (g-C3N4)/WO3 composites and enhanced visible-light-driven photodegradation of acetaldehyde gas, J. Hazard. Mater. 260(2013) 475-482. [21] W. Liu, M.Wang, C. Xu, S. Chen, Facile synthesis of g-C3N4/ZnO composite with enhanced visible light photooxidation and photoreduction properties, Chem. Eng. J. 209(2012) 386-393. [22] L. Ge, C. Han, J. Liu, In situ synthesis and enhanced visible light photocatalytic activities of novel PANI-g-C3N4 composite photocatalysts, J. Mater. Chem. 22(23) (2012) 11843-11850. [23] L. Ge, C. Han, X. Xiao, L. Guo, Synthesis and characterization of composite visible light active photocatalystsMoS2-g-C3N4with enhanced hydrogen evolution activity, Int. J. Hydrog. Energy 38(17) (2013) 6960-6969. [24] Y.L. Tian, B.B. Chang, J.L. Lu, J. Fu, F.N. Xi, X.P. Dong, Hydrothermal synthesis of graphitic carbon nitride-Bi2WO6 heterojunctions with enhanced visible light photocatalytic activities, ACS Appl. Mater. Interfaces 5(15) (2013) 7079-7085. [25] S.M.Wang, D.L. Li, C. Sun, S.G. Yang, Y. Guan, H. He, Synthesis and characterization of g-C3N4/Ag3VO4 composites with significantly enhanced visible-light photocatalytic activity for triphenylmethane dye degradation, Appl. Catal., B 144(2014) 885-892. [26] Y.M. He, L.H. Zhang, X.X.Wang, Y. Wu, H.J. Lin, L.H. Zhao,W.Z.Weng, H.L.Wan,M.H. Fan, Enhanced photodegradation activity of methyl orange over Z-scheme type MoO3-g-C3N4 composite under visible light irradiation, RSC Adv. 4(26) (2014) 13610-13619. [27] C.C. Han, L. Ge, C.F. Chen, Y.J. Li, X.L. Xiao, Y.N. Zhang, L.L. Guo, Novel visible light induced Co3O4-g-C3N4 heterojunction photocatalysts for efficient degradation of methyl orange, Appl. Catal., B 147(2014) 546-553. [28] B. Chai, T. Peng, J. Mao, K. Li, L. Zan, Graphitic carbon nitride (g-C3N4)-Pt-TiO2 nanocomposite as an efficient photocatalyst for hydrogen production under visible light irradiation, Phys. Chem. Chem. Phys. 14(48) (2012) 16745-16752. [29] C. Miranda, H. Mansilla, J. Yanez, S. Obregon, G. Colon, Improved photocatalytic activity of g-C3N4/TiO2 composites prepared by a simple impregnation method, J. Photochem. Photobiol. A 253(2013) 16-21. [30] K. Kondo, N. Murakami, C. Ye, T. Tsubota, T. Ohno, Development of highly efficient sulfur-doped TiO2 photocatalysts hybridized with graphitic carbon nitride, Appl. Catal., B 142(2013) 362-367. [31] S.C. Yan, Z.S. Li, Z.G. Zou, Photodegradation performance of g-C3N4 fabricated by directly heating melamine, Langmuir 25(17) (2009) 10397-10401. [32] L. Ge, C. Han, J. Liu, Y. Li, Enhanced visible light photocatalytic activity of novel polymeric g-C3N4 loaded with Ag nanoparticles, Appl. Catal., A 409(2011) 215-222. [33] N. Boonprakob,N.Wetchakun, S. Phanichphant, D.Waxler, P. Sherrell, A.Nattestad, J. Chen, B. Inceesungvorn, Enhanced visible-light photocatalytic activity of g-C3N4/TiO2 films, J. Colloid Interface Sci. 417(2014) 402-409. [34] N.E.Mircescu,M. Oltean, V. Chis, N. Leopold, FTIR, FT-Raman, SERS and DFT study on melamine, Vib. Spectrosc. 62(2012) 165-171. [35] J. Liu, T. Zhang, Z.Wang, G. Dawson,W. Chen, Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity, J. Mater. Chem. 21(38) (2011) 14398-14401. [36] K. Gibson, J. Glaser, E. Milke, M. Marzini, S. Tragl, M. Binnewies, H.A. Mayer, H.J. Meyer, Preparation of carbon nitride materials by polycondensation of the singlesource precursor aminodichlorotriazine (ADCT), Mater. Chem. Phys. 112(1) (2008) 52-56. [37] Y. Zhao, Z. Liu,W. Chu, L. Song, Z. Zhang, D. Yu, Y. Tian, S. Xie, L. Sun, Large-scale synthesis of nitrogen-rich carbon nitride microfibers by using graphitic carbon nitride as precursor, Adv. Mater. 20(9) (2008) 1777-1778. [38] H. Yan, H. Yang, TiO2-g-C3N4 composite materials for photocatalytic H2 evolution under visible light irradiation, J. Alloys Compd. 509(4) (2011) L26-L29. [39] Y. Zhang, J. Liu, G. Wu,W. Chen, Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production, Nanoscale 4(17) (2012) 5300-5303. [40] Q. Xiang, J. Yu, M. Jaroniec, Preparation and enhanced visible-light photocatalytic H2 production activity of graphene/C3N4 composites, J. Phys. Chem. C 115(15) (2011) 7355-7363. [41] X. Zhou, F. Peng, H. Wang, H. Yu, Y. Fang, Carbon nitride polymer sensitized TiO2 nanotube arrays with enhanced visible light photoelectrochemical and photocatalytic performance, Chem. Commun. 47(37) (2011) 10323-10325. [42] S.S. Zhao, S. Chen, H.T. Yu, X. Quan, g-C3N4/TiO2 hybrid photocatalyst with wide absorption wavelength range and effective photogenerated charge separation, Sep. Purif. Technol. 99(2012) 50-54. [43] K. Ikeda, H. Sakai, R. Baba, K. Hashimoto, A. Fujishima, Photocatalytic reactions involving radical chain reactions using microelectrodes, J. Phys. Chem. B 101(14) (1997) 2617-2620. [44] W. Kubo, T. Tatsuma, Mechanisms of photocatalytic remote oxidation, J. Am. Chem. Soc. 128(50) (2006) 16034-16035. |
[1] | Yingli Li, Zhishuncheng Li, Guangfei Qu, Rui Li, Shuaiyu Liang, Junhong Zhou, Wei Ji, Huiming Tang. Mechanism, behaviour and application of iron nitrate modified carbon nanotube composites for the adsorption of arsenic in aqueous solutions [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 26-36. |
[2] | Jiahao Lu, Zhimeng Wang, Qi Zhang, Cheng Sun, Yanyan Zhou, Sijia Wang, Xiangyun Qiu, Shoudong Xu, Rentian Chen, Tao Wei. The effects of amino groups and open metal sites of MOFs on polymer-based electrolytes for all-solid-state lithium metal batteries [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 80-89. |
[3] | Yafei Su, Xuke Zhang, Hui Li, Donglai Peng, Yatao Zhang. In-situ incorporation of halloysite nanotubes with 2D zeolitic imidazolate framework-L based membrane for dye/salt separation [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 103-111. |
[4] | Shanghong Ma, Haitao Zhang, Jianbo Qu, Xiuzhong Zhu, Qingfei Hu, Jianyong Wang, Peng Ye, Futao Sai, Shiwei Chen. Preparation of waterborne polyurethane/β-cyclodextrin composite nanosponge by ion condensation method and its application in removing of dyes from wastewater [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 124-136. |
[5] | Jianhui Zhou, Xin Lai, Jianfeng Hu, Haijie Qi, Shan Liu, Zhengguo Zhang. Design of a graphene oxide@melamine foam/polyaniline@erythritol composite phase change material for thermal energy storage [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 282-290. |
[6] | Chi-Hui Tsou, Rui Zeng, Neng Wan, Manuel Reyes De Guzman, Xue-Fei Hu, Tao Yang, Chen Gao, Xiaomei Wei, Jia Yi, Li Lan, Rui-Tao Yang, Ya-Li Sun. Biological oyster shell waste enhances polyphenylene sulfide composites and endows them with antibacterial properties [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 118-131. |
[7] | Iltaf Khan, Chunjuan Wang, Shoaib Khan, Jinyin Chen, Aftab Khan, Sayyar Ali Shah, Aihua Yuan, Sohail Khan, Mehwish K. Butt, Humaira Asghar. Bio-capped and green synthesis of ZnO/g-C3N4 nanocomposites and its improved antibiotic and photocatalytic activities: An exceptional approach towards environmental remediation [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 215-224. |
[8] | Chao Yang, Zhelin Su, Yeshuang Wang, Huiling Fan, Meisheng Liang, Zhaohui Chen. Insight into the effect of gel drying temperature on the structure and desulfurization performance of ZnO/SiO2 adsorbents [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 233-241. |
[9] | Jiaxin Wu, Chenxiao Wang, Xianliang Meng, Haichen Liu, Ruizhi Chu, Guoguang Wu, Weisong Li, Xiaofeng Jiang, Deguang Yang. Enhancement of catalytic and anti-carbon deposition performance of SAPO-34/ZSM-5/quartz films in MTA reaction by Si/Al ratio regulation [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 314-324. |
[10] | Hongzhi Zhang, Huiyan Guo, Yang Liu, Chengxiang Shi, Lun Pan, Xiangwen Zhang, Ji-Jun Zou. Thixotropic composite hydrogels based on agarose and inorganic hybrid gellants [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 240-247. |
[11] | Qingyue Han, Suqing Wang, Wenhan Kong, Bing Ji, Haihui Wang. Composite polymer electrolyte reinforced by graphitic carbon nitride nanosheets for room-temperature all-solid-state lithium batteries [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 257-263. |
[12] | Miaomiao Zhao, Degang Ma, Yu Ye. Adsorption, separation and recovery properties of blocky zeolite-biochar composites for remediation of cadmium contaminated soil [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 272-279. |
[13] | Jiacheng Chen, Jincheng Wang, Shuhong Li, Kailing Xiang, Shiqiang Song. Pyridine terminated polyurethane dendrimer/chlorinated butyl rubber nanocomposites with excellent mechanical and damping properties [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 211-221. |
[14] | Yuanyuan Jin, Siping Ding, Peiyun Li, Xuefen Wang. Coordination of thin-film nanofibrous composite dialysis membrane and reduced graphene oxide aerogel adsorbents for elimination of indoxyl sulfate [J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 111-121. |
[15] | Feng Guo, Chunli Shi, Wei Sun, Yanan Liu, Xue Lin, Weilong Shi. Pomelo biochar as an electron acceptor to modify graphitic carbon nitride for boosting visible-light-driven photocatalytic degradation of tetracycline [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 1-11. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 326
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 3836
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||