[1] J.H. Hills, Radial non-uniformity of velocity and voidage in a bubble column, Trans. Inst. Chem. Eng. 52(1974) 1-9. [2] P. Zehner, Momentum, mass and heat transfer in bubble columns, Part 1:Flow model of the bubble column and liquid velocities, Int. Chem. Eng. 26(1986) 29-35. [3] A. Lubbert, B. Larson, Detailed investigation of the multiphase flow in airlift tower loop reactors, Chem. Eng. Sci. 45(1990) 3047-3053. [4] H. Luo, H.F. Svendsen, Turbulent circulation in bubble columns from eddy viscosity distributions of single-phase pipe flow, Can. J. Chem. Eng. 69(1991) 1389-1394. [5] B.P. Yao, C. Zheng, H.E. Gasche, H. Hofmann, Bubble behavior and flow structure of bubble columns, J. Chem. Eng. Process Technol. 29(1991) 65-75. [6] J.S. Groen, R.G.C. Oldeman, R.F. Mudde, H.E.A. Van, Coherent structures and axial dispersion in bubble column reactors, Chem. Eng. Sci. 51(1996) 2511-2520. [7] A.A. Kulkarni, J.B. Joshi, V.R. Kumar, B.D. Kulkarni, Simultaneous measurement of hold-up profiles and interfacial area using LDA in bubble columns:predictions by multiresolution analysis and comparison with experiments, Chem. Eng. Sci. 56(2001) 6437-6445. [8] J.M. Schweitzer, J. Bayle, T. Gauthier, Local gas hold-up measurements in fluidized bed and slurry bubble column, Chem. Eng. Sci. 56(2001) 1103-1110. [9] S. Degaleesa, M.P. Dudukovic, Y. Pan, Experimental study of gas-induced liquid-flow structures in bubble columns, AIChE J. 47(2001) 1913-1931. [10] U. Parasu Veera, K.L. Kataria, J.B. Joshi, Effect of superficial gas velocity on gas holdup profiles in foaming liquids in bubble column reactors, Chem. Eng. J. 99(2004) 53-58. [11] L.A. Briens, N. Ellis, Hydrodynamics of three-phase fluidized bed systems examined by statistical, fractal, chaos and wavelet analysis methods, Chem. Eng. Sci. 60(2005) 6094-6106. [12] M.R. Rampure, A.A. Kulkarni, V.V. Ranade, Hydrodynamics of bubble column reactors at high gas velocity:Experiments and computational fluid dynamics (CFD) simulations, Ind. Eng. Chem. Res. 46(2007) 8431-8447. [13] L.J. Wang, Y. Zhang, X. Li, Studies on hydrodynamics of slurry turbulent bubble column (I) gas holdup and its radial distribution, CIESC J. 59(2008) 2996-3002(in Chinese). [14] A. Tsutsumi, W. Chen, T. Hasegawa, et al., Neural networks for prediction of the dynamic heat-transfer rate in bubble columns, Ind. Eng. Chem. Res. 40(23) (2001) 5358-5361. [15] A. Tsutsumi, R. Kikuchi, Design and scale-up methodology for multi-phase reactors based on non-linear dynamics, Appl. Energy 67(1) (2000) 195-219. [16] R. Nottenkamper, A. Steiff, P.M. Weinspach, Experimental investigation of hydrodynamics of bubble columns, Ger. Chem. Eng. 6(1983) 147-155. [17] A. Forret, J.M. Schweitzer, R. Gauthier, et al., Scale up of slurry bubble reactors, Oil Gas Sci. Technol. 61(2006) 443-458. [18] A. Forret, J.M. Schweitzer, R. Gauthier, et al., Influence of scale on the hydrodynamics of bubble column reactors:an experimental study in columns of 0.1, 0.4 and 1 m diameters, Chem. Eng. Sci. 58(2003) 719-724. [19] J.B. Joshi, Computational flow modeling and design of bubble column reactors, Chem. Eng. Sci. 56(2001) 5893-5933. [20] J.B. Joshi, V.S. Vitankar, A.A. Kulkarni, et al., Coherent flow structures in bubble column reactors, Chem. Eng. Sci. 57(2002) 3047-3053. [21] M.T. Dhotre, K. Ekambara, J.B. Joshi, CFD simulation of sparger design and height to diameter ratio on gas hold-up profiles in bubble column reactors, Exp. Thermal Fluid Sci. 28(2004) 407-421. [22] K. Ekambara, M.T. Dhotre, J.B. Joshi, CFD simulations of bubble column reactors:1D, 2D and 3D approach, Chem. Eng. Sci. 60(2005) 6733-6746. [23] A.A. Kulkarni, K. Ekambara, J.B. Joshi, On the development of flow pattern in a bubble column reactor:development of a 3D CFD code and verification with results from LDA measurements, Chem. Eng. Sci. 62(2007) 1049-1072. [24] M.V. Tabib, S.A. Roy, J.B. Joshi, CFD simulation of bubble column-an analysis of interphase forces and turbulence models, Chem. Eng. J. 139(2008) 589-614. [25] R. Krishna, J.M. Van, M.I. Urseanu, Three-phase Eulerian simulations of bubble column reactors operating in the churn-turbulent regime:A scale-up strategy, Chem. Eng. Sci. 55(2000) 3275-3286. [26] R. Krishna, J.M. Van, Eulerian simulations of bubble columns operating at elevated pressures in the churn turbulent flow regime, Chem. Eng. Sci. 56(2001) 6249-6258. [27] R. Krishna, J.M. Van, Scaling up bubble column reactors with highly viscous liquid phase, Chem. Eng. Technol. 25(2002) 1015-1020. [28] J.M. Van, R. Krishna, Eulerian simulations for determination of the axial dispersion of liquid and gas phases in bubble columns operating in the churn-turbulent regime, Chem. Eng. Sci. 56(2001) 503-512. [29] E. Olmos, C. Gentric, C. Vial, et al., Numerical simulation of multiphase flow in bubble column reactors. Influence of bubble coalescence and breakup, Chem. Eng. Sci. 56(2001) 6359-6365. [30] P. Chen, M.P. Dudukovic, J. Sanyal, Three-dimensional simulation of bubble column flows with bubble coalescence and breakup, AIChE J. 51(2005) 696-712. [31] H.A. Jakobsen, H. Lindborg, C.A. Dorao, Modeling of bubble column reactors:progress and limitations, Ind. Eng. Chem. Res. 44(2005) 5107-5151. [32] M.R. Bhole, J.B. Joshi, D. Ramkrishna, CFD simulation of bubble columns incorporating population balance modeling, Chem. Eng. Sci. 63(2008) 2267-2282. [33] J. Reimann, H. Kusterer, H. Jhon, Two-phase mass flow rate measurements with Pitot tube and density measurements, Symp. Measuring Techniques in Gas-Liquid Two-phase Flows, Nancy, France, 1983. [34] T.H. Lee, G.C. Park, D.J. Lee, Local flow characteristics of subcooled boiling flow of water in a vertical concentric annulus, Int. J. Multiphase Flow 28(8) (2002) 1351-1368. [35] Z. Li, L. Wang, X. Li, Experimental and numerical investigations of bubble column under large diameter, high superficial gas velocity, 244th National Fall Meeting of the ACS, Philadelphia, USA, 2012. [36] Y. Zhang, L. Wang, X. Li, Studies on hydrodynamics of turbulent slurry bubble column (Ⅱ):axial liquid and slurry velocity distribution, CIESC J. 59(12) (2008) 3003-3008(in Chinese). [37] H.A. Jakobsen, Chemical Reactor Modeling:Multiphase Reactive Flows, Springer, Berlin Heidelberg, 2008. [38] R. Krishna, J.M. Van, M.I. Urseanu, et al., Design and scale up of a bubble column slurry reactor for Fischer-Tropsch synthesis, Chem. Eng. Sci. 56(2) (2001) 537-545. [39] J.M. Van, J. Ellenberger, R. Krishna, Scale-up strategy for bubble column slurry reactors using CFD simulations, Catal. Today 79(2003) 259-265. [40] T.F. Wang, J.F. Wang, Y. Jin, Experimental study and CFD simulation of hydrodynamic behaviours in an external loop airlift slurry reactor, Can. J. Chem. Eng. 82(6) (2004) 1183-1190. [41] J.F. Brady, Computer simulation of viscous suspensions, Chem. Eng. Sci. 56(2001) 2921-2926. [42] T.F. Wang, J.F. Wang, Y. Jin, Slurry reactors for gas-to-liquid processes:A review, Ind. Eng. Chem. Res. 46(2007) 5824-5847. [43] C.O. Vandu, K. Koop, R. Krishna, Large bubble sizes and rise velocities in a bubble column slurry reactor, Chem. Eng. Technol. 27(2004) 1195-1199. [44] G.Q. Yang, B. Du, L.S. Fan, Bubble formation and dynamics in gas-liquid-solid fluidization-a review, Chem. Eng. Sci. 62(2007) 2-27. [45] L. Schiller, A. Naumann, A drag coefficient correlation, Vdi Ztg. 77(318) (1935) 51. [46] B.M. Lopez, Turbulent Bubbly Two-phase Flow in a Triangular Duct(Ph.D. Thesis) Rensselaer Polytechnic Institute, New York, 1992. [47] H.B. Stewart, B. Wendroff, Two-phase flow models and methods, J. Comput. Phys. 56(1984) 363-409. [48] H.A. Jakobsen, B.H. Sannaes, S. Grevskott, et al., Modelling of vertical bubble-driven flows, Ind. Eng. Chem. Res. 36(1997) 4052-4074. [49] A. Sokolichin, G. Eigenberger, A. Lapin, Simulation of buoyancy driven bubbly flow:established simplifications and open questions, AIChE J. 50(2004) 24-45. [50] H.P. Riquarts, Strömungsprofile, impulsaustausch und durchmischung der flüssigen phase in blasensäulen, Chem. Ing. Tech. 53(1981) 60-61. [51] P. Gupta, B. Ong, M.H. Al-Dahhan, et al., Hydrodynamics of churn turbulent bubble columns:Gas-liquid recirculation and mechanistic modeling, Catal. Today 64(2001) 253-269. |