[1] B. Metz, O. Davidson, H.C. de Coninck, M. Loos, L.A. Meyer, IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group Ⅲ of the Intergovernmental Panel on Climate Change, Cambridge University Press, New York, 2005.[2] R. Wengenmayr, T. Buhrke, Renewable Energy:Sustainable Concepts for the Energy Change, Wiley-VCH, Weinheim, 2013(c2013).[3] C. Visual, CCS:A 2 Degree Solution, (United States) 2014.[4] K.A. Mumford, Y. Wu, K.H. Smith, G.W. Stevens, Review of solvent based carbon-dioxide capture technologies, Front. Chem. Sci. Eng. 9(2015) 125-141.[5] T.N.G. Borhani, A. Azarpour, V. Akbari, S.R. Wan Alwi, Z.A. Manan, CO2 capture with potassium carbonate solutions:A state-of-the-art review, Int. J. Greenhouse Gas Control 41(2015) 142-162.[6] A. Kothandaraman, Carbon dioxide capture by chemical absorption:A solvent comparison study, Carbon N. Y. (2010) 144-184.[7] A. Cousins, L.T. Wardhaugh, P.H.M. Feron, Preliminary analysis of process flow sheet modifications for energy efficient CO2 capture from flue gases using chemical absorption, Chem. Eng. Res. Des. 89(2011) 1237-1251.[8] H. Thee, K.H. Smith, G. da Silva, S.E. Kentish, G.W. Stevens, Carbon dioxide absorption into unpromoted and borate-catalyzed potassium carbonate solutions, Chem. Eng. J. 181-182(2012) 694-701.[9] C. Anderson, T. Harkin, M. Ho, K. Mumford, A. Qader, G. Stevens, B. Hooper, Developments in the CO2CRC UNO MK 3 process:A multi-component solvent process for large scale CO2 capture, Energy Procedia 37(2013) 225-232.[10] G. Hu, N.J. Nicholas, K.H. Smith, K.A. Mumford, S.E. Kentish, G.W. Stevens, Carbon dioxide absorption into promoted potassium carbonate solutions:A review, Int. J. Greenhouse Gas Control 53(2016) 28-40.[11] I.P. Koronaki, L. Prentza, V. Papaefthimiou, Modeling of CO2 capture via chemical absorption processes-An extensive literature review, Renew. Sust. Energ. Rev. 50(2015) 547-566.[12] A. Lee, M. Wolf, N. Kromer, K.A. Mumford, N.J. Nicholas, S.E. Kentish, G.W. Stevens, A study of the vapour-liquid equilibrium of CO2 in mixed solutions of potassium carbonate and potassium glycinate, Int. J. Greenhouse Gas Control 36(2015) 27-33.[13] A. Lee, K.A. Mumford, Y. Wu, N. Nicholas, G.W. Stevens, Understanding the vapour-liquid equilibrium of CO2 in mixed solutions of potassium carbonate and potassium glycinate, Int. J. Greenhouse Gas Control 47(2016) 303-309.[14] M.D. Hilliard, A Predictive Thermodynamic Model for an Aqueous Blend of Potassium Carbonate, Piperazine, and Monoethanolamine for Carbon Dioxide Capture From Flue Gas, (Ph.D. Thesis) The University of Texas at Austin, 2008.[15] K.A. Mumford, K.H. Smith, C.J. Anderson, S. Shen, W. Tao, Y.A. Suryaputradinata, A. Qader, B. Hooper, R.A. Innocenzi, S.E. Kentish, G.W. Stevens, Post-combustion capture of CO2:Results from the solvent absorption capture plant at hazelwood power station using potassium carbonate solvent, Energy and Fuels 2012, pp. 138-146.[16] K.H. Smith, C.J. Anderson, W. Tao, K. Endo, K.A. Mumford, S.E. Kentish, A. Qader, B. Hooper, G.W. Stevens, Pre-combustion capture of CO2-Results from solvent absorption pilot plant trials using 30 wt% potassium carbonate and boric acid promoted potassium carbonate solvent, Int. J. Greenhouse Gas Control 10(2012) 64-73.[17] T.N.G. Borhani, V. Akbari, M. Afkhamipour, M.K.A. Hamid, Z.A. Manan, Comparison of equilibrium and non-equilibrium models of a tray column for post-combustion CO2 capture using DEA-promoted potassium carbonate solution, Chem. Eng. Sci. 122(2015) 291-298.[18] S.M.P. Ooi, Development and Demonstration of a New Non-equilibrium Rate-based Process Model for the Hot Potassium Carbonate Process, 2009.[19] Y. Wu, N.R. Mirza, G. Hu, K.H. Smith, G.W. Stevens, K.A. Mumford, Precipitating characteristics of potassium bicarbonate using concentrated potassium carbonate solvent for carbon dioxide capture. Part 1. Nucleation, Ind. Eng. Chem. Res. 56(2017) 6764-6774.[20] K. Smith, G. Xiao, K. Mumford, J. Gouw, I. Indrawan, N. Thanumurthy, D. Quyn, R. Cuthbertson, A. Rayer, N. Nicholas, A. Lee, G. Da Silva, S. Kentish, T. Harkin, A. Qader, C. Anderson, B. Hooper, G. Stevens, Demonstration of a concentrated potassium carbonate process for CO2 capture, Energy Fuel 28(2014) 299-306.[21] C.C. Chen, H.I. Britt, J.F. Boston, L.B. Evans, Local composition model for excess Gibbs energy of electrolyte systems. Part I:Single solvent, single completely dissociated electrolyte systems, AICHE J. 28(1982) 588-596.[22] R. Taylor, R. Krishna, Multicomponent Mass Transfer, Wiley, New York, 1993(c1993).[23] R. Smith, Chemical Process Design and Integration, Wiley, Chichester, England; Hoboken, NJ, 2005(c2005).[24] D. Quyn, A.V. Rayer, J. Gouw, I. Indrawan, K.A. Mumford, C.J. Anderson, B. Hooper, G. W. Stevens, Results from a pilot plant using un-promoted potassium carbonate for carbon capture, Energy Procedia 37(2013) 448-454.[25] K. Smith, K. Mumford, D. Quyn, N. Temple, N. Thanumurthy, J. Gouw, S. Li, N. Nicholas, A. Lee, C. Anderson, T. Harkin, A. Qader, B. Hooper, S. Kentish, G. Stevens, CO2CRC CCS Cost Reduction Project:Solvent Precipitation System, 2014.[26] P. Mores, N. Scenna, S. Mussati, Post-combustion CO2 capture process:Equilibrium stage mathematical model of the chemical absorption of CO2 into monoethanolamine (MEA) aqueous solution, Chem. Eng. Res. Des. 89(2011) 1587-1599.[27] C. Noeres, E.Y. Kenig, A. Go, Modelling of Reactive Separation Processes:Reactive Absorption and Reactive Distillation, 200342.[28] C. Kale, A. Gorak, H. Schoenmakers, Modelling of the reactive absorption of CO2 using mono-ethanolamine, Int. J. Greenhouse Gas Control 17(2013) 294-308.[29] L. De Leye, G.F. Froment, Rigorous simulation and design of columns for gas absorption and chemical reaction-I. Packed columns, Comput. Chem. Eng. 10(1986) 493-504.[30] N. Asprion, Nonequilibrium rate-based simulation of reactive systems:simulation model, heat transfer, and influence of film discretization, Ind. Eng. Chem. Res. 45(2006) 2054-2069.[31] S.V. Joshi, G. Astarita, D.W. Savage, Prediction of pilot plant performance for a chemical gas absorption process, AICHE Symp. Ser 1981, p. 63.[32] M.M. Suenson, C. Georgakis, L.B. Evans, Steady-state and dynamic modeling of a gas absorber-stripper system, Ind. Eng. Chem. Fundam. 24(1985) 288-295.[33] D.P. Rao, Design of a Packed Column for Absorption of Carbon Dioxide in Hot K2CO3 Solution Promoted by Arsenious Acid, 3, 1989152-155.[34] M.R. Rahimpour, A.Z. Kashkooli, Enhanced carbon dioxide removal by promoted hot potassium carbonate in a split-flow absorber, Chem. Eng. Process. Process Intensif. 43(2004) 857-865.[35] T. Todinca, C. Tanasie, T. Proll, A. Cata, Absorption with chemical reaction:Evaluation of rate promoters effect on CO2 absorption in hot potassium carbonate solutions, Comput. Aided Chem. Eng. 24(2007) 1065-1070.[36] H.A. Al-Ramdhan, A Rate-based Model for the Design and Simulation of a Carbon Dioxide Absorber Using the Hot Potassium Carbonate Process, Colorado School of Mines, 2001.[37] D. Sanyal, N. Vasishtha, D.N. Saraf, Modeling of carbon dioxide absorber using hot carbonate process, Ind. Eng. Chem. Res. 27(1988) 2149-2156.[38] L. Marini, K. Clement, C. Georgakis, M.M. Suenson, Experimental and theoretical investigation of an absorber-stripper pilot plant under nonequilibrium conditions, Ind. Eng. Chem. Fundam. 24(1985) 296-301.[39] R. Thiele, R. Faber, J.-U. Repke, H. Thielert, G. Wozny, Design of industrial reactive absorption process in sour gas treatment using rigorous modeling and accurate experimentation, Trans IChemE Part A Chem. Eng. Res. Des. 85(2007) 74-87. |