[1] |
Y.W. Kuang, C.C. Yi, W. Wang, Numerical simulation of frosting behavior and its effect on a direct-contact ambient air vaporizer, J. Nat. Gas Sci. Eng. 27(2015) 55-63.
|
[2] |
J. Pan, R. Li, T. Lv, G. Wu, Z. Deng, Thermal performance calculation and analysis of heat transfer tube in super open rack vaporizer, Appl. Therm. Eng. 93(2016) 27-35.
|
[3] |
L. Pu, Z. Qu, Y. Bai, D. Qi, K. Song, P. Yi, Thermal performance analysis of intermediate fluid vaporizer for liquefied natural gas, Appl. Therm. Eng. 65(1-2) (2014) 564-574.
|
[4] |
S. Xu, Q. Cheng, L. Zhuang, B. Tang, Q. Ren, X. Zhang, LNG vaporizers using various refrigerants as intermediate fluid: Comparison of the required heat transfer area, J. Nat. Gas Sci. Eng. 25(2015) 1-9.
|
[5] |
S. Egashira, LNG vaporizer for LNG re-gasification terminal, Kobelco Technol. Rev. 32(2013) 6(http://www.kobelco.co.jp/english/ktr/pdf/ktr_32/064-069.pdf).
|
[6] |
G.E. Engdahl, Submerged Combustion LNG Vaporizer, USA Pat. (2007) US7168395B2.
|
[7] |
A. Zukauskas, Heat transfer from tubes in crossflow, Adv. Heat Tran. 8(1972) 93-160.
|
[8] |
Z. Baniamerian, Analytical modeling of boiling nanofluids, J. Thermophys. Heat Transf. 31(1) (2017) 136-144.
|
[9] |
J.P.M. Florez, M.B.H. Mantelli, Thermal model for sintered cylindrical evaporators of loop heat pipes, J. Thermophys. Heat Transf. 31(1) (2017) 165-177.
|
[10] |
D. Robinson, J. Thome, Local bundle boiling heat transfer coefficients on a plain tube bundle (RP-1089), HVAC&R Res. 10(1) (2004) 33-51.
|
[11] |
D. Robinson, J. Thome, Local bundle boiling heat transfer coefficients on a turbo-BⅡ HP tube bundle (RP-1089), HVAC&R Res. 10(4) (2004) 441-457.
|
[12] |
D. Robinson, J. Thome, Local bundle boiling heat transfer coefficients on an integral finned tube bundle (RP-1089), HVAC&R Res. 10(3) (2004) 331-344.
|
[13] |
E.v. Rooyen, F. Agostini, N. Borhani, J.R. Thome, Boiling on a tube bundle: part Ⅱ- Heat transfer and pressure drop, Heat Transfer Eng. 33(11) (2012) 930-946.
|
[14] |
K. Sorensen, A. Franco, L. Pelagotti, T.J. Condra, Modelling of a cross flow evaporator for CSP application: Analysis of the use of different two phase heat transfer and pressure drop correlations, Int. J. Therm. Sci. 107(2016) 66-76.
|
[15] |
M.M. Shah, A general correlation for heat transfer during saturated boiling with flow across tube bundles, HVAC&R Res. 13(5) (2007) 749-768.
|
[16] |
J. Gylys, T. Zdankus, M. Gylys, Investigation of heat transfer from inclined flat surface to aqueous foam, Int. J. Heat Mass Transf. 59(2013) 272-278.
|
[17] |
J. Gylys, T. Zdankus, M. Gylys, Experimental investigation of heat transfer from inclined flat surface to aqueous foam, Int. J. Heat Mass Transf. 69(2014) 230-236.
|
[18] |
J. Gylys, S. Sinkunas, T. Zdankus, Analysis of staggered tube bundle heat transfer to vertical foam flow, Int. J. Heat Mass Transf. 51(1-2) (2008) 253-262.
|
[19] |
J. Gylys, T. Zdankus, R. Jonynas, R. Maladauskas, Experimental investigation of in-line tube bundle heat transfer process to vertical downward foam flow, Int. J. Heat Mass Transf. 54(11-12) (2011) 2326-2333.
|
[20] |
J. Gylys, T. Zdankus, S. Sinkunas, M. Babilas, R. Jonynas, Experimental Investigation of the Heat Transfer Process Between a Tube Bundle and An Upward Aqueous Foam Flow, Advanced Computational Methods And Experiments In Heat Transfer Xi, vol. 68, Wit Press, Southampton, 2010.
|
[21] |
O.C. Leite, Submerged combustion vaporisers for LNG distribution facilities, Linde Engineering, 1997, http://www.digitalrefining.com/article/1000326.
|
[22] |
C.L. Han, J.J. Ren, Y.Q. Wang, M.S. Bi, Experimental studies of shell-side fluid flow and heat transfer characteristics in a submerged combustion vaporizer, Int. J. Heat Mass Transf. 101(2016) 436-444.
|
[23] |
C.L. Han, J.J. Ren, Y.Q. Wang, W.P. Dong, M.S. Bi, Numerical simulation of coupled fluid flow and heat transfer characteristics in a submerged combustion vaporizer, Cryogenics 80(2016) 115-126.
|
[24] |
C.L. Han, J.J. Ren, Y.Q. Wang, W.P. Dong, M.S. Bi, Experimental investigation on fluid flow and heat transfer characteristics of a submerged combustion vaporizer, Appl. Therm. Eng. 113(2017) 529-536.
|
[25] |
Y.C. Park, J. Kim, Submerged combustion vaporizer optimization using entropy minimization method, Appl. Therm. Eng. 103(2016) 1071-1076.
|
[26] |
C. Qi, W. Wang, B. Wang, Y. Kuang, J. Xu, Performance analysis of submerged combustion vaporizer, J. Nat. Gas Sci. Eng. 31(2016) 313-319.
|
[27] |
G. Ribatski, J.R. Thome, Two-phase flow and heat transfer across horizontal tube bundles-a review, Heat Transfer Eng. 28(6) (2007) 508-524.
|
[28] |
R. Dowlati, M. Kawaji, A.M.C. Chan, Pitch-to-diameter effect on two-phase flow across an in-line tube bundle, AICHE J. 36(5) (1990) 765-772.
|
[29] |
D.Y. Han, Q.Q. Xu, D. Zhou, J.Z. Yin, Design of heat transfer in submerged combustion vaporizer, J. Nat. Gas Sci. Eng. 31(2016) 76-85.
|
[30] |
F.W. Dittus, L.M.K. Boelter, Heat transfer in automobile radiator of the tubular type, Int. Commun. Heat Mass Transfer 12(1) (1985) 3-22.
|
[31] |
J.P. Holman, Unsteady-State Conduction, 9 th ed., Heat transfer, McGraw - Hill, Inc., New York, 1997131-204.
|