[1] T. Casale, C. Sacco, S. Ricci, B. Loreti, A. Pacchiarotti, V. Cupelli, G. Arcangeli, N. Mucci, V. Antuono, F. De Marco, Workers exposed to low levels of benzene present in urban air:Assessment of peripheral blood count variations, Chemosphere 152(2016) 392-398. [2] M.L. Soto, A. Moure, H. Domínguez, J.C. Parajó, Recovery, concentration and purification of phenolic compounds by adsorption:A review, J. Food Eng. 105(2011) 1-27. [3] P. Patnaik, A Comprehensive Guide to the Hazardous Properties of Chemical Substances, John Wiley & Sons, 2007. [4] L.H. Keith, W.A. Telliard, Priority pollutants:I. A perspective view, Environ. Sci. Technol. 13(1979) 416-423. [5] H.Y. Kahng, J.J. Kukor, K.H. Oh, Characterization of strain HY99, a novel microorganism capable of aerobic and anaerobic degradation of aniline, FEMS Microbiol. Lett. 190(2000) 215-221. [6] H. Zangeneh, A.A.L. Zinatizadeh, M. Feizy, A comparative study on the performance of different advanced oxidation processes (UV/O3/H2O2) treating linear alkyl benzene (LAB) production plant's wastewater, J. Ind. Eng. Chem. 20(2013) 1453-1461. [7] P. Frangos, H. Wang, W. Shen, Y. Gang, S. Deng, J. Huang, B. Wang, Y. Wang, A novel photoelectro-peroxone process for the degradation and mineralization of substituted benzenes in water, Chem. Eng. J. 286(2015) 239-248. [8] M. Cheng, G. Zeng, D. Huang, L. Cui, P. Xu, C. Zhang, Y. Liu, Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds:A review, Chem. Eng. J. 284(2015) 582-598. [9] G. Boczkaj, M. Gągol, M. Klein, A. Przyjazny, Effective method of treatment of effluents from production of bitumens under basic pH conditions using hydrodynamic cavitation aided by external oxidants, Ultrason. Sonochem. 40(2018) 969-979. [10] G. Boczkaj, A. Fernandes, P. Makoś, Study of different Advanced Oxidation Processes for wastewater treatment from petroleum bitumen production at basic pH, Ind. Eng. Chem. Res. 56(2017) 8806-8814. [11] M. Gągol, A. Przyjazny, G. Boczkaj, Highly effective degradation of selected groups of organic compounds by cavitation based AOPs under basic pH conditions, Ultrason. Sonochem. 45(2018) 257-266. [12] H. Patel, D. Madamwar, Biomethanation of low pH petrochemical wastewater using up-flow fixed-film anaerobic bioreactors, World J. Microbiol. Biotechnol. 16(2000) 69-75. [13] J.M. Poyatos, M.M. Muñio, M.C. Almecija, J.C. Torres, E. Hontoria, F. Osorio, Advanced oxidation processes for wastewater treatment:State of the art, Water Air Soil Pollut. 205(2010) 187-204. [14] S.H.S. Chan, T.Y. Wu, J.C. Juan, C.Y. Teh, Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye waste-water, J. Chem. Technol. Biotechnol. 86(2011) 1130-1158. [15] E. Brillas, J. Casado, Aniline degradation by electro-Fenton and peroxi-coagulation processes using a flow reactor for wastewater treatment, Chemosphere 47(2002) 241-248. [16] M. Mascia, A. Vacca, A.M. Polcaro, S. Palmas, A. Da Pozzo, Electrochemical treatment of simulated ground water containing MTBE and BTEX with BDD anodes, J. Chem. Technol. Biotechnol. 86(2011) 128-137. [17] C.S. Hong, Y. Wang, B. Bush, Kinetics and products of the TiO2 photocatalytic degradation of 2-chlorobiphenyl in water, Chemosphere 36(1998) 1653-1667. [18] P. Kruus, R.C. Burk, M.H. Entezari, R. Otson, Sonication of aqueous solutions of chlorobenzene, Ultrason. Sonochem. 4(1997) 229-233. [19] X. Xie, Y. Zhang, W. Huang, S. Huang, Degradation kinetics and mechanism of aniline by heat-assisted persulfate oxidation, J. Environ. Sci. 24(2012) 821-826. [20] M. Tezuka, M. Iwasaki, Plasma-induced degradation of aniline in aqueous solution, Thin Solid Films 386(2001) 204-207. [21] M. Dilmeghani, K.O. Zahir, Kinetics and mechanism of chlorobenzene degradation in aqueous samples using advanced oxidation processes, J. Environ. Qual. 30(2001) 2062-2070. [22] V.L. Gole, P.R. Gogate, Intensification of sonochemical degradation of chlorobenzene using additives, Desalin. Water Treat. 53(2013) 1-13. [23] H. Huang, H. Huang, Y. Zhan, G. Liu, X. Wang, H. Lu, X. Liang, Q. Feng, D.Y.C. Leung, Efficient degradation of gaseous benzene by VUV photolysis combined with ozone-assisted catalytic oxidation:Performance and mechanism, Appl. Catal. B Environ. 186(2016) 62-68. [24] Y. Liu, X. He, Y. Fu, D.D. Dionysiou, Degradation kinetics and mechanism of oxytetracycline by hydroxyl radical-based advanced oxidation processes, Chem. Eng. J. 284(2016) 1317-1327. [25] Y. Pang, H. Lei, Degradation of p-nitrophenol through microwave-assisted heterogeneous activation of peroxymonosulfate by manganese ferrite, Chem. Eng. J. 287(2016) 585-592. [26] M. Gągol, A. Przyjazny, G. Boczkaj, Wastewater treatment by means of advanced oxidation processes based on cavitation-A review, Chem. Eng. J. 338(2018) 599-627. [27] J. Du, Y. Dong, S. Zhang, Preparation Technology of active oxygen disinfectant and the effect of air disinfection research, J. Beijing Univ. Chem. Technol. Nat. Sci. 30(2003) 14-17. [28] M. Yang, K. Sun, J. Du, Alkaline fuel cell reactor for synthesis of hydrogen peroxide, J. Beijing Univ. Chem. Technol. 29(2002) 91-93. [29] Y.S. Shen, D.K. Wang, Development of photoreactor design equation for the treatment of dye wastewater by UV/H2O2 process, J. Hazard. Mater. 89(2002) 267-277. [30] G. Boczkaj, A. Fernandes, Wastewater treatment by means of advanced oxidation processes at basic pH conditions:a review, Chem. Eng. J. 320(2017) 608-633. [31] N.H. Ince, G. Tezcanlı?, Reactive dyestuff degradation by combined sonolysis and ozonation, Dyes Pigments 49(2001) 145-153. [32] I. Gültekin, N.H. Ince, Degradation of aryl-azo-naphthol dyes by ultrasound, ozone and their combination:Effect of α-substituents, Ultrason. Sonochem. 13(2006) 208-214. [33] N. Wang, P. Wang, Study and application status of microwave in organic wastewater treatment-A review, Chem. Eng. J. 283(2016) 193-214. |