Chin.J.Chem.Eng. ›› 2019, Vol. 27 ›› Issue (3): 501-513.DOI: 10.1016/j.cjche.2018.08.009
• Fluid Dynamics and Transport Phenomena • Previous Articles Next Articles
A.A. Alfaryjat, A. Dobrovicescu, D. Stanciu
Received:
2018-04-11
Revised:
2018-08-08
Online:
2019-04-25
Published:
2019-03-28
Contact:
A.A.Alfaryjat,E-mail addresses:altayyeb.al@stud.mec.upb.ro;A.Dobrovicescu,E-mail addresses:adobrovicescu@yahoo.com
A.A. Alfaryjat, A. Dobrovicescu, D. Stanciu
通讯作者:
A.A.Alfaryjat,E-mail addresses:altayyeb.al@stud.mec.upb.ro;A.Dobrovicescu,E-mail addresses:adobrovicescu@yahoo.com
A.A. Alfaryjat, A. Dobrovicescu, D. Stanciu. Influence of heat flux and Reynolds number on the entropy generation for different types of nanofluids in a hexagon microchannel heat sink[J]. Chin.J.Chem.Eng., 2019, 27(3): 501-513.
A.A. Alfaryjat, A. Dobrovicescu, D. Stanciu. Influence of heat flux and Reynolds number on the entropy generation for different types of nanofluids in a hexagon microchannel heat sink[J]. Chinese Journal of Chemical Engineering, 2019, 27(3): 501-513.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2018.08.009
[1] | A. Kosa, Y. Peles, Thermal-hydraulic performance of MEMS-based pin fin heat sink, J. Heat Transf. 128(2006) 121-131. |
[2] | Y. Peles, A. Kosar, C. Mishra, C.J. Kuo, B. Schneider, Forced convective heat transfer across a pin fin micro heat sink, Int. J. Heat Mass Transf. 48(2005) 3615-3627. |
[3] | H. Shafeie, O. Abouali, K. Jafarpur, G. Ahmadi, Numerical study of heat transfer performance of single-phase heat sinks with micro pin-fin structures, Appl. Therm. Eng. 58(2013) 68-76. |
[4] | F.J. Hong, P. Cheng, H. Ge, T.J. Goh, Conjugate heat transfer in tree-shaped microchannel network heat sink for integrated microelectronic cooling application, Int. J. Heat Mass Transf. 50(2007) 4986-4998. |
[5] | F. Hong, P. Cheng, Three dimensional numerical analyses and optimization of offset strip-fin microchannel heat sinks, Int. Commun. Heat Mass Transf. 36(2009) 651-656. |
[6] | C.A.R. Jimenez, S.G. Kandlikar, A.H. Guerrero, Performance of online and offset micro pin-fin heat sinks with variable fin density, IEEE Trans. Compon. Packag. Manuf. Technol. 3(2013) 86-92. |
[7] | B. Shao, L. Wang, H. Cheng, J. Li, Optimization and numerical simulation of multilayer microchannel heat sink, International Conference on Advances in Computational Modeling and Simulation, Procedia Engineering, Vol. 31, 2012, pp. 928-933. |
[8] | X. Shanglong, W. Yihao, C. Qiyu, Y. Lili, L. Yue, Optimization of the thermal performance of multi-layer silicon microchannel heat sinks, Therm. Sci. 20(2016) 2001-2013. |
[9] | O. Mahian, S. Mahmud, I. Pop, Analysis of first and second laws of thermodynamics between two isothermal cylinders with relative rotation in the presence of MHD flow, Int. J. Heat Mass Transf. 55(2012) 4808-4816. |
[10] | A. Bejan, Entropy Generation Minimization, CRC Press, Boca Raton, 1995. |
[11] | H. Abbassi, Entropy generation analysis in a uniformly heated microchannel heat sink, Energy 32(2007) 1932-1947. |
[12] | G. Ibanez, S. Cuevas, Entropy generation minimization of a MHD (magnetohydrodynamic) flow in a microchannel, Energy 35(2010) 4149-4155. |
[13] | M.H. Matin, W.A. Khan, Entropy generation analysis of heat and mass transfer in mixed electrokinetically and pressure driven flow through a slit microchannel, Energy 56(2013) 207-217. |
[14] | W.A. Khan, J.R. Culham, M.M. Yovanovich, Optimization of microchannel heat sinks using entropy generation minimization method, IEEE Trans. Compon. Packag. Technol. 32(2009) 243-251. |
[15] | M.H. Yazdi, S. Abdullah, I. Hashim, K. Sopian, Reducing entropy generation in MHD fluid flow over open parallel microchannels embedded in a micropatterned permeable surface, Entropy 15(2013) 4822-4843. |
[16] | S.U.S. Choi, J. Eastman, Enhancing Thermal Conductivity of Fluids with Nanoparticles, 1995. |
[17] | K. Trinavee, T.K. Gogoi, M. Pandey, Laminar convective heat transfer characteristic of Al2O3/water nanofluid in a circular microchannel, J. Phys. Conf. Ser. 759(2016) 012-088. |
[18] | A. Ebrahimi, F. Rikhtegar, A. Sabaghan, E. Roohi, Heat transfer and entropy generation in a microchannel with longitudinal vortex generators using nanofluids, Energy 101(2016) 190-201. |
[19] | P. Li, Y. Xie, D. Zhang, G. Xie, Heat transfer enhancement and entropy generation of nanofluids laminar convection in microchannels with flow control devices, Entropy 134(2016) 1-15. |
[20] | A. Ababaei, M. Abbaszadeh, Second law analyses of forced convection of low-Reynolds-number slip flow of nanofluid inside a microchannel with square impediments, Glob. J. Nanomed. 1(2017). |
[21] | T.W. Ting, Y.M. Hung, N. Guo, Entropy generation of nanofluid flow with streamwise conduction in microchannels, Energy 64(2014) 979-990. |
[22] | T.W. Ting, Y.M. Hung, N. Guo, Entropy generation of viscous dissipative nanofluid flow in thermal non-equilibrium porous media embedded in microchannels, Int. J. Heat Mass Transf. 81(2015) 862-877. |
[23] | T.W. Ting, Y.M. Hung, N. Guo, Viscous dissipation effect on streamwise entropy generation of nanofluid flow in microchannel heat sinks, J. Energy Resour. Technol. ASME 138(2016) 052002-052009. |
[24] | Y.T. Yang, Y.H. Wang, B.Y. Huang, Numerical optimization for nanofluid flow in microchannels using entropy generation minimization, Numer. Heat Transf. A 67(2015) 571-588. |
[25] | H.H. Najafabadi, M.K. Moraveji, Three-dimensional CFD modeling of fluid flow and heat transfer characteristics of Al2O3/water nanofluid in microchannel heat sink with Eulerian-Eulerian approach, Iran. J. Chem. Eng. 13(2016) 47-61. |
[26] | M. Nasiri, M.M. Rashidi, G. Lorenzini, Effect of magnetic field on entropy generation in a microchannel heat sink with offset fan shaped, Entropy 18(2016) 1-12. |
[27] | S.S. Khaleduzzaman, M.R. Sohel, I.M. Mahbubul, R. Saidur, J. Selvaraj, Exergy and entropy generation analysis of TiO2-water nanofluid flow through the water block as an electronics device, Int. J. Heat Mass Transf. 101(2016) 104-111. |
[28] | J. Li, C. Kleinstreuer, Y. Feng, Computational analysis of thermal performance and entropy generation of nanofluid flow in microchannels, Proceedings of the ASME 3rd Micro/Nanoscale Heat & Mass Transfer International Conference, 2012. |
[29] | J. Li, C. Kleinstreuer, Entropy generation analysis for nanofluid flow in microchannels, J. Heat Transf. 132(2010) 122401-122408. |
[30] | A.S. Tabrizi, H.R. Seyf, Analysis of entropy generation and convective heat transfer of Al2O3 nanofluid flow in a tangential micro heat sink, Int. J. Heat Mass Transf. 55(2012) 4366-4375. |
[31] | M. Hassan, R. Sadri, G. Ahmadi, M.B. Dahari, S.N. Kazi, Numerical study of entropy generation in a flowing nanofluid used in micro-and minichannels, Entropy 15(2013) 144-155. |
[32] | S. Heshmatian, M. Bahiraei, Numerical investigation of entropy generation to predict irreversibilities in nanofluid flow within a microchannel:effects of Brownian diffusion, shear rate and viscosity gradient, Chem. Eng. Sci. 172(2017) 52-65. |
[33] | P.K. Singh, K.B. Anoop, T. Sundararajan, S.K. Das, Entropy generation due to flow and heat transfer in nanofluids, Int. J. Heat Mass Transf. 53(2010) 4757-4767. |
[34] | M.R. Sohel, R. Saidur, N.H. Hassan, M.M. Elias, S.S. Khaleduzzaman, Analysis of entropy generation using nanofluid flow through the circular microchannel and minichannel heat sink, Int. Commun. Heat Mass Transf. 46(2013) 85-91. |
[35] | G. Sheikhzadeh, A. Aghaei, H. Ehteram, M. Abbaszadeh, Analytical study of parameters affecting entropy generation of nanofluid turbulent flow in channel and microchannel, Therm. Sci. 20(2016) 2037-2050. |
[36] | V. Bianco, S. Nardini, O. Manca, Enhancement of heat transfer and entropy generation analysis of nanofluids turbulent convection flow in square section tubes, Nanoscale Res. Lett. 2(2011) 6-252. |
[37] | O. Mahian, A. Kianifar, A.Z. Sahin, S. Wongwises, Heat transfer, pressure drop, and entropy generation in a solar collector using SiO2/water nanofluids:Effects of nanoparticle size and pH, ASME J. Heat Transf. 137(2015) 061011-1-061011-9. |
[38] | S.S. Meibodi, A. Kianifar, O. Mahian, S. Wongwises, Second law analysis of a nanofluid-based solar collector using experimental data, J. Therm. Anal. Calorim. 126(2016) 617-625. |
[39] | Sh.M. Vanaki, P. Ganesan, H.A. Mohammed, Numerical study of convective heat transfer of nanofluids:A review, Renew. Sust. Energ. Rev. 54(2016) 1212-1239. |
[40] | A.A. Alfaryjata, H.A. Mohammedb, N.M. Adamc, D. Stanciua, A. Dobrovicescua, Numerical investigation of heat transfer enhancement using various nanofluids in hexagonal microchannel heat sink, Therm. Sci. Eng. Prog. 5(2018) 252-262. |
[41] | R.S. Vajjha, D.K. Das, Experimental determination of thermal conductivity of three nanofluids and development of new correlations, Int. J. Heat Mass Transf. 52(2009) 4675-4682. |
[42] | R.S. Vajjha, D.K. Das, D.P. Kulkarni, Development of new correlations for convective heat transfer and friction factor in turbulent regime for nanofluids, Int. J. Heat Mass Transf. 53(2010) 4607-4618. |
[43] | M. Corcione, Heat transfer features of buoyancy-driven nanofluids inside rectangular enclosures differentially heated at the sidewalls, Int. J. Therm. Sci. 49(2010) 1536-1546. |
[44] | O. Mahian, A. Kianifar, A.Z. Sahin, S. Wongwises, Entropy generation during Al2O3/water nanofluid flow in a solar collector:Effects of tube roughness, nanoparticle size, and different thermophysical models, Int. J. Heat Mass Transf. 78(2014) 64-75. |
[45] | Y. Xuan, Q. Li, W. Hu, Aggregation structure and thermal conductivity of nanofluids, AICHE J. 49(2003) 1038-1043. |
[46] | J.D. Anderson, Computational Fluid Dynamic:The Basics with Applications, 1995. |
[47] | C.J. Ho, L.C. Wei, Z.W. Li, An experimental investigation of forced convective cooling performance of a microchannel heat sink with Al2O3/water nanofluid, Appl. Therm. Eng. 30(2010) 96-103. |
[48] | H. Yarmand, G. Ahmadi, S. Gharehkhani, S.N. Kazi, M.R. Safaei, Entropy generation during turbulent flow of zirconia-water and other nanofluids in a square cross section tube with a constant heat flux, Entropy 16(2014) 6116-6132. |
[49] | T.P. Teng, Y.H. Hung, T.C. Teng, H.E. Mo, H.G. Hsu, The effect of alumina/water nanofluid particle size on thermal conductivity, Appl. Therm. Eng. 30(2010) 2213-2218. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||