[1] C.A.G.N. Montalbetti, V. Falque, Amide bond formation and peptide coupling, Tetrahedron. 61(46) (2005) 10827-10852. [2] Y.P. Liu, Y. Zhang, S.Q. Liu, Distribution and degradation kinetics of cyhalodiamide in Chinese rice field environment, Chin. J. Chem. Eng. 26(10) (2018) 2185-2191. [3] D.J.C. Constable, P.J. Dunn, J.D. Hayler, Key green chemistry research areas-a perspective from pharmaceutical manufacturers, Green Chem. 9(5) (2007) 411-420. [4] J. Fu, H.M. Ren, J. Zhu, Hydrolysis kinetics of 2-pyridinecarboxamide, 3-pyridinecarboxamide and 4-pyridinecarboxamide in high-temperature water, Chin. J. Chem. Eng. 22(9) (2014) 1005-1008. [5] C.J. Zu, J.W. Fu, Z.T. Tan, Advances in regeneration system of natural nicotinamide cofactor and its artificial analogues, CIESC J. 69(1) (2018) 259-271. [6] J.J. Weidner, P.M. Weintraub, R.A. Schnettler, Preparation of N-aryl-2-hydroxypropionamides from hydroxy aromatic compounds using a one-pot smiles rearrangement procedure, Tetrahedron. 53(18) (1997) 6303-6312. [7] S. Reimann, V. Danke, M. Beiner, Synthesis of supramolecular precision polymers:Crystallization under conformational constraints, J. Polym. Sci. Part A:Polym. Chem. 55(22) (2017) 3736-3748. [8] S. Srinivasan, P. Manisankar, Formamide as an ammonia synthon in amination of acid chlorides, Synth. Commun. 40(23) (2010) 3538-3543. [9] S. Ouarna, H. K'tir, S. Lakrout, An eco-friendly and highly efficient route for Nacylation under catalyst-free conditions, Orient. J. Chem. 31(2) (2015) 913-919. [10] M.J. Di Grandi, C. Bennett, K. Cagino, Direct preparation of amides from amine hydrochloride salts and orthoesters:A synthetic and mechanistic perspective, Synth. Commun. 45(22) (2015) 2601-2607. [11] I. Burkhardt, L. Lauterbach, N.L. Brock, Chemical differentiation of three DMSP lyases from the marine Roseobacter group, Org. Biomol. Chem. 15(20) (2017) 4432-4439. [12] J.J. Lin, J.J. Wu, Y.S. Ho, Synthesis and in situ transformation of poly(oxybutylene) amides by butoxylation, J. Appl. Polym. Sci. 82(2) (2001) 435-445. [13] R. Arora, S. Paul, R. Gupta, A mild and efficient procedure for the conversion of aromatic carboxylic esters to secondary amides, Can. J. Chem. 83(8) (2005) 1137-1140. [14] J.M. Withey, A. Bajic, Operationally simple synthesis of N, N-Diethyl-3-methylbenzamide (DEET) using COMU as a coupling reagent, J. Chem. Educ. 92(1) (2015) 175-178. [15] D.R. Sauer, D. Kalvin, K.M. Phelan, Microwave-assisted synthesis utilizing supported reagents:A rapid and efficient acylation procedure, Org. Lett. 5(24) (2003) 4721-4724. [16] Y.Q. Peng, G.H. Song, Amides by microwave-assisted dehydration of ammonium salts of carboxylic acids, Org. Prep. Proced. Int. 34(1) (2002) 95-97. [17] S.Y. Han, Y.A. Kim, Recent development of peptide coupling reagents in organic synthesis, Tetrahedron. 60(2004) 2447-2467. [18] M.M. Joullie, K.M. Lassen, Evolution of amide bond formation, Arkivoc. (2010) 189-250. [19] A.E. Wahba, J.N. Peng, M.T. Hamann, Reductive amidation of nitroarenes:A practical approach for the amidation of natural products, Tetrahedron Lett. 50(27) (2009) 3901-3904. [20] G. Sabari, B. Asim, M. John, Direct amide bond formation from carboxylic acids and amines using activated alumina balls as a new, convenient, clean, reusable and low cost heterogeneous catalyst, Green Chem. 14(11) (2012) 3220-3229. [21] Y. Liu, P.Z. Gao, C. Nikolay, Direct amide synthesis over core-shell TiO2@NiFe2O4 catalysts in a continuous flow radiofrequency-heated reactor, RSC Adv. 6(103) (2016) 100997-101007. [22] J.W. Comerford, J.H. Clark, D.J. Macquarrie, Clean, reusable and low cost heterogeneous catalyst for amide synthesis, Chem. Commun. (18) (2009) 2562-2564. [23] T.K. Houlding, K. Tchabanenko, M.T. Rahman, Direct amide formation using radiofrequency heating, Org. Biomol. Chem. 11(25) (2013) 4171-4177. [24] P.D. Morse, R.L. Beingessner, T.F. Jamison, Enhanced reaction efficiency in continuous flow, Isr. J. Chem. 57(3-4) (2016) 218-227. [25] R.M. Myers, D.E. Fitzpatrick, R.M. Turner, Flow chemistry meets advanced functional materials, Chem. Eur. J. 20(39) (2014) 12348-12366. [26] R. Porta, M. Benaglia, A. Puglisi, Flow chemistry:Recent developments in the synthesis of pharmaceutical products, Org. Process. Res. Dev. 20(1) (2016) 2-25. [27] J.C. Pastre, D.L. Browne, S.V. Ley, Flow chemistry syntheses of natural products, Chem. Soc. Rev. 42(23) (2013) 8849-8869. [28] J. Wegner, S. Ceylan, A. Kirschning, Flow chemistry-A key enabling technology for (multistep) organic synthesis, Adv. Synth. Catal. 354(1) (2012) 17-57. [29] S.V. Ley, D.E. Fitzpatrick, R.M. Myers, Machine-assisted organic synthesis, Angew. Chem. Int. Ed. 54(35) (2015) 3449-3464. [30] B. Gutmann, D. Cantillo, C.O. Kappe, Continuous-flow technology:A tool for the safe manufacturing of active pharmaceutical ingredients, Angew. Chem. Int. Ed. 54(23) (2015) 6688-6729. [31] D. Cantillo, C.O. Kappe, Direct preparation of nitriles from carboxylic acids in continuous flow, J. Org. Chem. 78(20) (2013) 10567-10571. [32] T. Ouchi, C. Battilocchio, J.M. Hawkins, S.V. Ley, Process intensification for the continuous flow hydrogenation of ethyl nicotinate, Org. Process. Res. Dev. 18(11) (2014) 1560-1566. [33] T.M. Kohl, C.H. Hornung, J. Tsanaktsidis, Amination of aryl halides and esters using intensified continuous flow processing, Molecules 20(10) (2015) 17860-17871. [34] J.A. Rincon, C. Mateos, P. Garcia-Losada, D.J. Mergott, Large-scale continuous flow transformation of oximes into fused-bicyclic Isoxazolidines:An example of process intensification, Org. Process. Res. Dev. 19(2) (2015) 347-351. [35] M. Shivkumar, V. Kunisi, Synthesis of hydroxyalkyl amides from esters, WO. Pat. (2012) 2012148624. [36] B.M. Plutschack, B. Pieber, K. Gilmore, The Hitchhiker's guide to flow Chemistryll, Chem. Rev. 117(2017) 11796-11893. [37] P. Francesca, P. Maddalena, C. Corrado, Reactions of esters with amines catalyzed by metal centers, Gazz. Chim. Ital. 118(6) (1988) 475-477. [38] J. Yoshida, Flash chemistry using electrochemical method and microsystems, Chem. Commun. (2005) 4509-4516. |