[1] M. Vaezi, M. Passandideh-Fard, M. Moghiman, et al., Gasification of heavy fuel oils:A thermochemical equilibrium approach, Fuel 90(2) (2011) 878-885. [2] M. Peters, W. Francis, Fuel and Fuel Technology, Pergamon Press, 1980. [3] A. Saario, A. Rebola, P. Coelho, et al., Heavy fuel oil combustion in a cylindrical laboratory furnace:measurements and modeling, Fuel 84(4) (2005) 359-369. [4] Z. Wang, M. Liu, X. Cheng, et al., Experimental study on oxy-fuel combustion of heavy oil, Int. J. Hydrog. Energy 42(31) (2017) 20306-20315. [5] M. Meratizaman, S. Monadizadeh, A. Ebrahimi, et al., Scenario analysis of gasification process application in electrical energy-freshwater generation from heavy fuel oil, thermodynamic, economic and environmental assessment, Int. J. Hydrog. Energy 40(6) (2015) 2578-2600. [6] A. Di Carlo, E. Bocci, V. Naso, Process simulation of a SOFC and double bubbling fluidized bed gasifier power plant, Int. J. Hydrog. Energy 38(1) (2013) 532-542. [7] Z. Chen, S. Yuan, Q. Liang, et al., Distribution of HCN, NH3, NO and N2 in an entrained flow gasifier, Chem. Eng. J. 148(2-3) (2009) 312-318. [8] M.A. Salam, K. Ahmed, N. Akter, et al., A review of hydrogen production via biomass gasification and its prospect in Bangladesh, Int. J. Hydrog. Energy 43(32) (2018) 14944-14973. [9] Z. Li, Y. Wu, H. Yang, et al., Effect of liquid viscosity on atomization in an internalmixing twin-fluid atomizer, Fuel 103(2013) 486-494. [10] L. Wang, C.L. Weller, D.D. Jones, et al., Contemporary issues in thermal gasification of biomass and its application to electricity and fuel production, Biomass Bioenergy 32(7) (2008) 573-581. [11] P. Mikaniki, S.M. Najafi, H. Ghassemi, Experimental study of a heavy fuel oil atomization by pressure-swirl injector in the application of entrained flow gasifier, Chin. J. Chem. Eng. 27(4) (2019) 765-771. [12] Z. Liu, Y. Huang, L. Sun, Studies on air core size in a simplex pressure-swirl atomizer, Int. J. Hydrog. Energy 42(29) (2017) 18649-18657. [13] M. Rashad, H. Yong, Z. Zekun, Effect of geometric parameters on spray characteristics of pressure swirl atomizers, Int. J. Hydrog. Energy 41(35) (2016) 15790-15799. [14] G. Ferreira, J.A. Garcia, F. Barreras, et al., Design optimization of twin-fluid atomizers with an internal mixing chamber for heavy fuel oils, Fuel Process. Technol. 90(2) (2009) 270-278. [15] T. Suzuki, H. Nishida, N. Hashimoto, et al., Hollow-cone Spray of Viscous Liquid in High-pPressure Gas Environment-Experimental Investigation for the Application of New Liquid Fuels to Gas-turbine, ICLASS 2012, 12th Triennial International Conference on Liquid Atomization and Spray Systems, Heidelberg, Germany, 2012 September 2-6. [16] R. Payri, F. Salvador, J. Gimeno, et al., The effect of temperature and pressure on thermodynamic properties of diesel and biodiesel fuels, Fuel 90(3) (2011) 1172-1180. [17] X. Zhang, C. Shen, P. Cheng, et al., An image-processing based method for the measurement of the film thickness of a swirl atomizer, J. Vis. 20(1) (2017) 1-5. [18] J.-W. Ding, G.-X. Li, Y.-S. Yu, The instability and droplet size distribution of liquidliquid coaxial swirling spray:An experimental investigation, Exp. Thermal Fluid Sci. 82(2017) 166-173. [19] S. Kim, T. Khil, D. Kim, et al., Effect of geometric parameters on the liquid film thickness and air core formation in a swirl injector, Meas. Sci. Technol. 20(1) (2008), 015403. [20] C. Liu, F. Liu, J. Yang, et al., Experimental investigations of spray generated by a pressure swirl atomizer, J. Energy Inst. 92(2) (2019) 210-221. [21] M. Mlkvik, P. Stahle, H.P. Schuchmann, et al., Twin-fluid atomization of viscous liquids:The effect of atomizer construction on breakup process, spray stability and droplet size, Int. J. Multiphase Flow 77(2015) 19-31. [22] L. Broniarz-Press, S. Wlodarczak, M. Matuszak, et al., The effect of orifice shape and the injection pressure on enhancement of the atomization process for pressureswirl atomizers, Crop Prot. 82(2016) 65-74. [23] M. Huth, A. Heilos, Fuel flexibility in gas turbine systems:iMPact on burner design and performance, Modern Gas Turbine Systems, Elsevier 2013, pp. 635-684. [24] Steinen, Steinen nozzle catalog,[cited 201917 January]; Available from https://www.steinen.com/nozzle-catalog.pdf. [25] M.R. Riazi, T.E. Daubert, Characterization parameters for petroleum fractions, Ind. Eng. Chem. Res. 26(4) (1987) 755-759. [26] A. Azimi, A. Arabkhalaj, R.S. Markadeh, et al., Fully transient modeling of the heavy fuel oil droplets evaporation, Fuel 230(2018) 52-63. [27] M. Ochowiak, M. Matuszak, S. Wlodarczak, et al., The concept design and study of twin-fluid effervescent atomizer with air stone aerator, Chem. Eng. Process. Process Intensif. 124(2018) 24-28. [28] N. Rizk, A. Lefebvre, Prediction of velocity coefficient and spray cone angle for simplex swirl atomizers, Int. J. Turbo Jet Engines 4(1-2) (1987) 65-74. [29] S. Chen, A. Lefebvre, J. Rollbuhler, Influence of geometric features on the performance of pressure-swirl atomizers, J. Eng. Gas Turbines Power 112(4) (1990) 579-584. [30] L. Dodge, J. Biaglow, Effect of elevated temperature and pressure on sprays from simplex swirl atomizers, J. Eng. Gas Turbines Power 108(1) (1986) 209-215. [31] S. DeCorso, Effect of ambient and fuel pressure on nozzle spray angle, Trans. ASME 79(3) (1957) 607-615. [32] J. Ballester, C. Dopazo, Discharge coefficient and spray angle measurements for small pressure-swirl nozzles, Atomization Sprays 4(3) (1994) 351-367. [33] B.R. Munson, T.H. Okiishi, W.W. Huebsch, et al., Fluid Mechanics, Wiley, Singapore, 2013. [34] D. Sivakumar, S. Vankeswaram, R. Sakthikumar, et al., Analysis on the atomization characteristics of aviation biofuel discharging from simplex swirl atomizer, Int. J. Multiphase Flow 72(2015) 88-96. [35] N. Rizk, A.H. Lefebvre, Internal flow characteristics of simplex swirl atomizers, J. Propuls. Power 1(3) (1985) 193-199. [36] P. Senecal, D.P. Schmidt, I. Nouar, et al., Modeling high-speed viscous liquid sheet atomization, Int. J. Multiphase Flow 25(6-7) (1999) 1073-1097. [37] A. Saha, J.D. Lee, S. Basu, et al., Breakup and coalescence characteristics of a hollow cone swirling spray, Phys. Fluids 24(12) (2012), 124103. [38] A. Lefebvre, Atomization and Sprays, Combustion:An International Series, Hemisphere Pub. Corp, 1989. [39] A. Radcliffe, The performance of a type of swirl atomizer, Proc. Inst. Mech. Eng. 169(1) (1955) 93-106. [40] A. Jasuja, Atomization of crude and residual fuel oils, J. Eng. Power 101(2) (1979) 250-258. [41] J. Ballester, C. Dopazo, Drop size measurements in heavy oil sprays from pressureswirl nozzles, Atomization Sprays 6(4) (1996) 377-408. [42] W.v. Ohnesorge, Formation of drops by nozzles and the breakup of liquid jets, Z. Angew. Math. Mech. 16(4) (1936) 355-358. [43] E. Giffen, The Atomisation of Liquid Fuels, Chapman & Hall, 1953. [44] K. Varde, Spray cone angle and its correlation in a high pressure fuel spray, Can. J. Chem. Eng. 63(2) (1985) 183-187. [45] K. Annamalai, I.K. Puri, Combustion Science and Engineering, CRC press, 2006. [46] A. Miskam, Z. Zainal, I. Yusof, Characterization of sawdust residues for cyclone gasifier, J. Appl. Sci. 9(12) (2009) 2294-2300. [47] A.H. Lefebvre, V.G. McDonell, Atomization and Sprays, CRC press, 2017. |