[1] A. Jasuja, Atomization of crude and residual fuel oils, ASME J. Eng. Power 101(2) (1979) 250-258. [2] N. Rizk, A.H. Lefebvre, Internal flow characteristics of simplex swirl atomizers, Journal of Propulsion and Power 1(3) (1985) 193-199. [3] J. Chin, N. D, A. Lefebvre, Influence of downstream distance on the spray characteristics of pressure-swirl atomizers, Journal of Engineering for Gas Turbines and Power 108(1) (1986) 219-224. [4] Y. Zhao, W. Li, J. Chin, Experimental and analytical investigation on the variation of spray characteristics along radial distance downstream of a pressure swirl atomizer, Journal of Engineering for Gas Turbines and Power 108(3) (1986) 473-478. [5] B.J. Rho, S.J. Kang, J.H. Oh, S.G. Lee, Swirl effect on the spray characteristics of a twin-fluid jet, KSME International Journal 12(5) (1998) 899-906. [6] Y. Liao, A. Sakman, S. Jeng, M. Jog, M. Benjamin, A comprehensive model to predict simplex atomizer performance, Journal of Engineering for Gas Turbines and Power 121(2) (1999) 285-294. [7] A. Ibrahim, M. Jog, Nonlinear instability of an annular liquid sheet exposed to gas flow, International Journal of Multiphase Flow 34(7) (2008) 647-664. [8] P.T. Lacava, D. Bastos-Netto, A.P. Pimenta, Design procedure and experimental evaluation of pressure-swirl atomizers, in:24th International Congress of the Aeronautical Sciences, Yokohama, Japan, 2004, pp. 1-9. [9] S. Nonnenmacher, M. Piesche, Design of hollow cone pressure swirl nozzles to atomize Newtonian fluids, Chemical Engineering Science 55(19) (2000) 4339-4348. [10] H. Mohammadi, P. Jabbarzadeh, M. Jabbarzadeh, M.T. Shrevani-Tabar, Numerical investigation on the hydrodynamics of the internal flow and spray behavior of diesel fuel in a conical nozzle orifice with the spiral rifling like guides, Fuel 196(2017) 419-430. [11] N. Kyriakides, C. Chryssakis, L. Kaiktsis, Development of a computational model for heavy fuel oil for marine diesel engine applications, in:19th Int. Multidimensional Engine Modeling User's Group Meeting at the SAE Congress, Detroit, 2009. [12] N. Kyriakides, C. Chryssakis, L. Kaiktsis, Influence of heavy fuel properties on spray atomization for marine diesel engine applications (No. 2009-01-1858), SAE Technical Paper (2009) 1-9. [13] W. Kim, T. Yu, W. Yoon, Atomization characteristics of emulsified fuel oil by instant emulsification, J. Mechan. Sci. and Technol. 26(6) (2012) 1781-1791. [14] Y. Fan, N. Hashimoto, H. Nishida, Y. Ozawa, Spray characterization of an airassist pressure-swirl atomizer injecting high-viscosity Jatropha oils, Fuel 121(2014) 271-283. [15] G. Billoud, M. Galland, C. Huynh Huu, S. Cancel E, Adaptive active control of combustion instabilities, Combustion Science and Technology 81(4-6) (1992) 257-283. [16] E. Gutmark, et al. Stabilization of combustion by controlling the turbulent shear flow structure. In Symposium on Turbulent Shear Flows, 7 th, Stanford, CA. 1989. [17] O. Delabroy, E. Haile, F. Lacas, S. Candel, A. Pollard, A. Sobiesiak, H. Becker, Passive and active control of NO x in industrial burners, Experimental Thermal and Fluid Science 16(1-2) (1998) 64-75. [18] C. Hantschk, J. Hermann, D. Vortmeyer, Active instability control with directdrive servo valves in liquid-fueled combustion systems, Symposium (International) on Combustion 2(26) (1996) 2835-2841. [19] K. Yu, T. Parr, K. Wilson, K. Schadow, E. Gutmark, Active control of liquidfueled combustion using periodic vortex-droplet interaction, in:Symposium (International) on Combustion, 2nd, Elsevier,Amsterdam (1996) 2843-2850. [20] F. Takahashi, W.J. Schmoll, J.L. Dressler, Characteristics of a velocity-modulated pressure-swirl atomizing spray, Journal of Propulsion and Power 11(5) (1995) 955-963. [21] J. Dressler, Atomization of liquid cylinders, cones, and sheets by acoustically-driven, amplitude-dependent instabilities, in:International conference on liquid atomization and spray systems, 1991, Gaithersburg, MD, USA. [22] J.L. Dressler, Two-Dimensional, high flow, precisely controlled monodisperse drop source, Final Report, 1993, pp. 1-67. [23] Dressler J.L., Liquid droplet generator, us, Pat. 5248087(1993). [24] E. Haile, F. Lacas, C. Desrayaud, D. Veynante, D. Durox, Characterization of a liquid fuel injector under continuous and modulated flow conditions, Particle & Particle Systems Characterization 15(3) (1998) 136-144. [25] I. Oshima, A. Sou, Longitudinal oscillation of a liquid sheet by parallel air flows, International Journal of Multiphase Flow 110(2019) 179-188. [26] S.M.A. Najafi, H. Ghassemi, Supercritical water gasification of a heavy fuel oil, Petroleum Science and Technology 36(9-10) (2018) 675-681. [27] L. Bayvel, Z. Orzechowski, Liquid Atomization, Combustion:An International Series, Taylor & Francis, 1993. [28] Z. Han, S. Parrish, P.V. Farrell, R.D. Reitz, Modeling atomization processes of pressure-swirl ollow-cone fuel sprays, Atomization and Sprays 7(6) (1997) 663-684. [29] Schmidt D.P., Nouar I., Senecal P., Rutland C., Martin J., Reitz R.D., Hoffman J.A., Pressure-swirl atomization in the near field, SAE Technical Paper (1999-01-0496) 1-16. [30] D. Fuster, A. Bagué, T. Boeck, L. Le Moyne, A. Leboissetier, S. Popinet, P. Ray, R. Scardovelli, S. Zaleski, Simulation of primary atomization with an octree adaptive mesh refinement and VOF method, International Journal of Multiphase Flow 35(6) (2009) 550-565. [31] S. Popinet, Gerris:a tree-based adaptive solver for the incompressible Euler equations in complex geometries, Journal of Computational Physics 190(2) (2003) 572-600. [32] S. Popinet, An accurate adaptive solver for surface-tension-driven interfacial flows, Journal of Computational Physics 228(16) (2009) 5838-5866. [33] M.W. Baltussen, J.A.M. Kuipers, N.G. Deen, A critical comparison of surface tension models for the volume of fluid method, Chemical Engineering Science 109(2014) 65-74. [34] R.S. Prakash, H. Gadgil, B. Raghunandan, Breakup processes of pressure swirl spray in gaseous cross-flow, International Journal of Multiphase Flow 66(2014) 79-91. [35] R. Tröger, Etude des processus d'injection et de formation du mélange diphasique réactif. applicationa l'injection directe dans les moteurs conventionnels et alternatifs PhD Thesis, Universite Pierre et Marie Curie, 2004. [36] A. Lefebvre, X. Wang, Mean drop sizes from pressure-swirl nozzles, Journal of Propulsion and Power 3(1) (1987) 11-18. [37] J. Ballester, C. Dopazo, Drop size measurements in heavy oil sprays from pressure-swirl nozzles, Atomization and Sprays 6(4) (1996) 377-408. [38] N. Saravanan, G. Nagarajan, G. Sanjay, C. Dhanasekaran, K. Kalaiselvan, Combustion analysis on a DI diesel engine with hydrogen in dual fuel mode, Fuel 87(17-18) (2008) 3591-3599. |