Chinese Journal of Chemical Engineering ›› 2019, Vol. 27 ›› Issue (7): 1735-1743.DOI: 10.1016/j.cjche.2019.04.023
• Materials and Product Engineering • Previous Articles
Shouwu Yu1,2, Shujuan Xiao2, Zewen Zhao2, Xiaowen Huo2, Junfu Wei1
Received:
2019-02-14
Online:
2019-10-14
Published:
2019-07-28
Contact:
Junfu Wei
Shouwu Yu1,2, Shujuan Xiao2, Zewen Zhao2, Xiaowen Huo2, Junfu Wei1
通讯作者:
Junfu Wei
Shouwu Yu, Shujuan Xiao, Zewen Zhao, Xiaowen Huo, Junfu Wei. Microencapsulated ammonium polyphosphate by polyurethane with segment of dipentaerythritol and its application in flame retardant polypropylene[J]. Chinese Journal of Chemical Engineering, 2019, 27(7): 1735-1743.
Shouwu Yu, Shujuan Xiao, Zewen Zhao, Xiaowen Huo, Junfu Wei. Microencapsulated ammonium polyphosphate by polyurethane with segment of dipentaerythritol and its application in flame retardant polypropylene[J]. 中国化学工程学报, 2019, 27(7): 1735-1743.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2019.04.023
[1] J. Xu, L. Chen, H. Qu, Y. Jiao, J. Xie, G. Xing, Preparation and characterization of activated carbon from reedy grass leaves by chemical activation with H3PO4, Appl. Surf. Sci. 320(2014) 674-680. [2] A.H. Jawad, R.A. Rashid, K. Ismail, S. Sabar, High surface area mesoporous activated carbon developed from coconut leaf by chemical activation with H3PO4 for adsorption of methylene blue, Desalin. Water Treat. 74(2017) 326-335. [3] F. Marrakchi, M.J. Ahmed, W.A. Khanday, M. Asif, B.H. Hameed, Mesoporousactivated carbon prepared from chitosan flakes via single-step sodium hydroxide activation for the adsorption of methylene blue, Int. J. Biol. Macromol. 98(2017) 233-239. [4] H. Jawad, Z.S. Mehdi, M.A.M. Ishak, K. Ismail, Large surface area activated carbon from low-rank coal via microwave-assisted KOH activation for methylene blue adsorption, Desalin. Water Treat. 110(2018) 239-249. [5] R. Acosta, V. Fierro, A.M. Yuso, D. Nabarlatz, A. Celzard, Tetracycline adsorption onto activated carbons produced by KOH activation of tyre pyrolysis char, Chemosphere 149(2016) 168-176. [6] A.H. Jawad, N.F.H. Mamat, M.F. Abdullah, K. Ismail, Adsorption of methylene blue onto acid-treated mango peels:Kinetic, equilibrium and thermodynamic, Desalin. Water Treat. 59(2017) 210-219. [7] A.H. Jawad, S. Sabar, M.A.M. Ishak, L.D. Wilson, S.S.A. Norrahma, M.K. Talaria, A. M. Farhan, Microwave-assisted preparation of mesoporous-activated carbon from coconut (Cocos nucifera) leaf by H3PO4 activation for methylene blue adsorption, Chem. Eng. Commun. 204(10) (2017) 1143-1156. [8] R.A. Rashid, A.H. Jawad, M.A.M. Ishak, N.N. Kasim, FeCl3-activated carbon developed from coconut leaves:Characterization and application for methylene blue removal, Sains Malaysiana 47(3) (2018) 603-610. [9] M.J.P. Brito, C.M. Veloso, R.C.F. Bonomo, R.C.I. Fontan, L.S. Santos, K.A. Monteiro, Activated carbons preparation from yellow mombin fruit stones for lipase immobilization, Fuel Process. Technol. 156(2017) 421-428. [10] A.H. Jawad, R.A. Rashid, M.A.M. Ishak, L.D. Wilson, Adsorption of methylene blue onto activated carbon developed from biomass waste by H2SO4 activation:Kinetic, equilibrium and thermodynamic studies, Desalin. Water Treat. 57(2016) 25194-25206. [11] A.H. Jawad, S.A. Mohammed, M.S. Mastuli, M.F. Abdullah, Carbonization of corn (Zea mays) cob food residue by one-step chemical activation with sulfuric acid for methylene blue adsorption, Desalin. Water Treat. 118(2018) 342-351. [12] A.H. Jawad, R.A. Rashid, M.A.M. Ishak, K. Ismail, Adsorptive removal of methylene blue by chemically treated cellulosic waste banana (Musa sapientum) peels, J. Taibah Univ. Sci. 12(6) (2018) 809-819. [13] R.A. Rashid, A.H. Jawad, M.A.M. Ishak, N.N. Kasim, KOH-activated carbon developed from biomass waste:Adsorption equilibrium, kinetic and thermodynamic studies for Methylene blue uptake, Desalin. Water Treat. 57(2016) 27226-27236. [14] M. Hu, J. Reboul, S. Furukawa, L. Radhakrishnan, Y. Zhang, P. Srinivasu, H. Iwai, H. Wang, Y. Nemoto, N. Suzuki, S. Kitagawa, Direct synthesis of nanoporous carbon nitride fibers using Al-based porous coordination polymers (Al-PCPs), Chem. Commun. 47(2011) 8124-8126. [15] L. Radhakrishnan, J. Reboul, S. Furukawa, P. Srinivasu, S. Kitagawa, Y. Yamauchi, Preparation of microporous carbon fibers through carbonization of Al-based porous coordination polymer (Al-PCP) with furfuryl alcohol, Chem. Mater. 23(2011) 1225-1231. [16] W. Chaikittisilp, N.L. Torad, C. Li, M. Imura, N. Suzuki, S. Ishihara, K. Ariga, Y. Yamauchi, Synthesis of nanoporous carbon-cobalt-oxide hybrid electrocatalysts by thermal conversion of metal-organic frameworks, Chem. Eur. J. 20(2014) 4217-4221. [17] W. Ao, J. Fu, X. Mao, Q. Kang, C. Ran, Y. Liu, H. Zhang, Z. Gao, J. Li, G. Liu, J. Dai, Microwave assisted preparation of activated carbon from biomass:A review, Renew. Sust. Energ. Rev. 92(2018) 958-979. [18] Q.S. Liu, T. Zheng, N. Li, P. Wang, G. Abulikemu, Modification of bamboo-based activated carbon using microwave radiation and its effects on the adsorption of methylene blue, Appl. Surf. Sci. 256(2010) 3309-3315. [19] A.H. Jawad, M.A.M. Ishak, A.M. Farhan, K. Ismail, Response surface methodology approach for optimization of color removal and COD reduction of methylene blue using microwave-induced NaOH activated carbon from biomass waste, Desalin. Water Treat. 62(2017) 208-220. [20] X. Wang, X. Liang, Y. Wang, X. Wang, M. Liu, D. Yin, Y. Zhang, Adsorption of copper (Ⅱ) onto activated carbons from sewage sludge by microwave-induced phosphoric acid and zinc chloride activation, Desalination 278(1-3) (2011) 231-237. [21] W. Francis Coal, Its Formation and Composition, 2nd ed., Edward Arnold, London, UK, 1961. [22] A.S. Azmi, S. Yusup, S. Muhamad, The influence of temperature on adsorption capacity of Malaysian coal, Chem. Eng. Process. 45(2006) 392-396. [23] S.S. Idris, N.A. Rahman, K. Ismail, Combustion characteristics of Malaysian oil palm biomass, sub-bituminous coal and their respective blends via thermogravimetric analysis (TGA), Bioresour. Technol. 123(2012) 581-591. [24] C.S. Pei, Coal as an energy resource in Malaysia, Geot. Soc. Malaysia, Bulletin 33(1993) 399-410. [25] A.H. Jawad, N.S.A. Mubarak, M.A.M. Ishak, K. Ismail, W.I. Nawawi, Kinetics of photocatalytic decolourization of cationic dye using porous TiO2 film, J. Taibah Univ. Sci. 10(2016) 352-362. [26] A.H. Jawad, A.F.M. Alkarkhi, N.S.A. Mubarak, Photocatalytic decolorization of methylene blue by an immobilized TiO2 film under visible light irradiation:Optimization using response surface methodology (RSM), Desalin. Water Treat. 56(2015) 161-172. [27] N.S.A. Mubarak, A.H. Jawad, W.I. Nawawi, Equilibrium, kinetic and thermodynamic studies of Reactive Red 120 dye adsorption by chitosan beads from aqueous solution, Energy Ecol. Environ. 2(2017) 85-93. [28] A.H. Jawad, M.A. Islam, B.H. Hameed, Cross-linked chitosan thin film coated onto glass plate as an effective adsorbent for adsorption of reactive orange 16, Int. J. Biol. Macromol. 95(2017) 743-749. [29] M.A. Jamaluddin, K. Ismail, M.A.M. Ishak, Z.A. Ghani, M.F. Abdullah, M.T.U. Safian, N.I.N. Hakimi Mohd, Microwave-assisted pyrolysis of palm kernel shell:Optimization using response surface methodology (RSM), Renew. Energy 55(2013) 357-365. [30] M. Ahmedna, W.E. Marshall, R.M. Rao, S.J. Clarke, Use of filtration and buffers in raw sugar colour measurements, J. Sci. Food Agric. 75(1) (1997) 109-116. [31] Lubrizol standard test method, Iodine value, test procedure AATM 1112-01 https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwiLxeysMzKAhUGCY4KHV2PAi0QFggnMAE&url=https%3A%2F%2Fwww.lubrizol.com%2FWorkArea%2Flinkit.aspx%3FLinkIdentifier%3Did%26ItemID%3D5216&usg=AFQjCNFDJcbCej0Sb5Nlt2XzqMTQ_5-4xQ&bvm=bv.112766941,d.c2E, 2006. [32] ASTM Standard, Standard test method for total ash content of activated carbon, ASTM International West Conshohocken, 2011, PA, https://cds.cern.ch/record/519385?ln=en. [33] F.A. Adekola, H.I. Adegoke, Adsorption of blue-dye on activated carbons produced from rice husk, coconut shell and coconut coirpith, IFE J. Sci. 7(1) (2005) 151-157. [34] S.S. Idris, N.A. Rahman, K. Ismail, A.B. Alias, Z.A. Rashid, M.J. Aris, Investigation on thermochemical behaviour of low rank Malaysian coal, oil palm biomass and their blends during pyrolysis via thermogravimetric analysis (TGA), Bioresour. Technol. 101(2010) 4584-4592. [35] F. Kaouah, S. Boumaza, T. Berrama, M. Trari, Z. Bendjama, Preparation and characterization of activated carbon from wild olive cores (oleaster) by H3PO4 for the removal of Basic Red 46, J. Clean. Prod. 54(2013) 296-306. [36] S. Gao, L. Ge, T.E. Rufford, Z. Zhu, The preparation of activated carbon discs from tar pitch and coal powder for adsorption of CO2, CH4 and N2, Microporous Mesoporous Mater. 238(2017) 19-26. [37] J. Laine, A. Calafat, Factors affecting the preparation of activated carbons from coconut shell catalyzed by potassium, Carbon 29(7) (1991) 949-953. [38] M.D. Pavlović, A.V. Buntić, K.R. Mihajlovski, S.S. Šiler-Marinković, D.G. Antonović, Z. Radovanović, S.I. Dimitrijević-Branković, Rapid cationic dye adsorption on polyphenol-extracted coffee grounds-A response surface methodology approach, J. Taiwan Inst. Chem. Eng. 45(2014) 1691-1699. [39] M. Sanati, A. Andersson, DRIFT study of the oxidation and the ammoxidation of toluene over a TiO2 (B)-supported vanadia catalyst, J. Mol. Catal. 81(1993) 51-62. [40] A.H. Jawad, M.A. Nawi, M.H. Mohamed, L.D. Wilson, Oxidation of chitosan in solution by photocatalysis and product characterization, J. Polym. Environ. 25(2017) (2017) 828-835. [41] A.H. Jawad, M.A. Nawi, Characterizations of the photocatalytically-oxidized cross-linked chitosan-glutaraldehyde and its application as a sub-layer in the TiO2/CS-GLA bilayer photocatalyst system, J. Polym. Environ. 20(2012) 817-829. [42] J. Coates, Interpretation of infrared spectra, a practical approach, in:R.A. Meyers (Ed.), Encyclopedia of Analytical Chemistry, John Wiley & Sons Ltd, Chichester, 2000, pp. 10815-10837. [43] M.A. Nawi, A.H. Jawad, S. Sabar, W.S.W. Ngah, Photocatalytic-oxidation of solid state chitosan by immobilized bilayer assembly of TiO2-chitosan under a compact household fluorescent lamp irradiation, Carbohydr. Polym. 83(2011) 1146-1152. [44] K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquérol, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem. 57(1985) 603-619. [45] L.D. Wilson, M.H. Mohamed, J.V. Headley, Surface area and pore structure properties of b-cyclodextrin-urethane copolymer materials, J. Colloid Interface Sci. 357(2011) 215-222. [46] F. Fatieh, L. Dehabadi, L.D. Wilson, R. Besant, R. Evitts, C.J. Simonson, Sorption study of a starch biopolymer as an alternative dessicant for energy wheels, ACS Sustain. Chem. Eng. 4(3) (2016) 1262-1273. [47] S.J. Gregg, K.S.W. Sing, Adsorption, Surface Area and Porosity, 2nd ed., Academic Press, London, 1982, pp. 195-288. [48] K.S.W. Sing, R.T. Williams, Physisorption hysteresis loops and the characterization of nanoporous materials, Adsorpt. Sci. Technol. 22(2004) 773-782. [49] N.D. Hutson, Structural effects on the high temperature adsorption of CO2 on a synthetic hydrotalcite, Chem. Mater. 16(2004) 4135-4143. [50] T.M. Darweesh, M.J. Ahmed, Batch and fixed bed adsorption of levofloxacin on granular activated carbon from date (Phoenix dactylifera L.) stones by KOH chemical activation, Environ. Toxicol. Pharmacol. 50(2017) 159-166. [51] Y. Guo, K. Yu, Z. Wang, H. Xu, Effects of activation conditions on preparation of porous carbon from rice husk, Carbon 41(8) (2000) 1645-1687. [52] M.A. Islam, S. Sabar, A. Benhouri, W.A. Khanday, M. Asif, B.H. Hameed, Nanoporous activated carbon prepared from karanj (Pongamia pinnata) fruit hulls for methylene blue adsorption, J. Taiwan Inst. Chem. Eng. 74(2017) (2017) 96-104. [53] M. Song, B. Jin, R. Xiao, L. Yang, Y. Wu, Z. Zhong, Y. Huang, The comparison of two activation techniques to prepare activated carbon from corn cob, Biomass Bioenergy 48(2013) 250-256. [54] N. Yoshizawa, K. Maruyama, Y. Yamada, E. Ishikawa, M. Kobayashi, Y. Toda, M. Shiraishi, XRD evaluation of KOH activation process and influence of coal rank, Fuel 81(2002) (2002) 1717-1722. [55] A.H. Karoyo, L. Dehabadi, L.D. Wilson, Renewable starch particle carriers with switchable adsorption properties, ACS Sustain. Chem. Eng. 6(2018) 4603-4613. [56] S. Lagergren, Zur theorie der sogenannten adsorption gelöster stoffe. K Sven Vetensk, Hand 24(1898) (1898) 1-39. [57] Y.S. Ho, G. McKay, Sorption of dye from aqueous solution by peat, Chem. Eng. J. 70(1998) 115-124. [58] K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherm systems, Chem. Eng. J. 156(2010) 2-10. [59] M.A. Islam, A. Benhouria, M. Asif, B.H. Hameed, Methylene blue adsorption on factory-rejected tea activated carbon prepared by conjunction of hydrothermal carbonization and sodium hydroxide activation processes, J. Taiwan Inst. Chem. Eng. 52(2015) 57-64. [60] V.O. Njoku, K.Y. Foo, M. Asif, B.H. Hameed, Preparation of activated carbons from rambutan (Nephelium lappaceum) peel by microwave-induced KOH activation for acid yellow 17 dye adsorption, Chem. Eng. J. 250(2014) (2014) 198-204. [61] I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc. 40(1918) 1361-1403. [62] H.M.F. Freundlich, Over the adsorption in solution, J. Phys. Chem. 57(1906) 385-471. [63] M.I. Temkin, V. Pyzhev, Kinetics of ammonia synthesis on promoted iron catalysts, Acta Physiochim. URSS 12(1940) 217-222. [64] K.Y. Foo, B.H. Hameed, Preparation, characterization and evaluation of adsorptive properties of orange peel based activated carbon via microwave induced K2CO3 activation, Bioresour. Technol. 104(2012) 679-686. [65] K.Y. Foo, B.H. Hameed, Porous structure and adsorptive properties of pine apple peel based activated carbons prepared via microwave assisted KOH and K2CO3 activation, Microporous Mesoporous Mater. 148(2012) 191-195. [66] K.Y. Foo, B.H. Hameed, Coconut husk derived activated carbon via microwave induced activation:Effects of activation agents, preparation parameters and adsorption performance, Chem. Eng. J. 184(2012) 57-65. [67] K.Y. Foo, B.H. Hameed, Microwave-assisted preparation and adsorption performance of activated carbon from biodiesel industry solid reside:Influence of operational parameters, Bioresour. Technol. 103(2012) 398-404. [68] M.J. Ahmed, S.K. Theydan, Optimization of microwave preparation conditions for activated carbon from Albizia lebbeck seed pods for methylene blue dye adsorption, J. Anal. Appl. Pyrolysis 105(2014) 199-208. [69] K.Y. Foo, B.H. Hameed, Utilization of oil palm biodiesel solid residue as renewable sources for preparation of granular activated carbon by microwave induced KOH activation, Bioresour. Technol. 130(2013) 696-702. [70] K.Y. Foo, B.H. Hameed, Preparation of activated carbon from date stones by microwave induced chemical activation:Application for methylene blue adsorption, Chem. Eng. J. 170(2011) 338-341. [71] K.Y. Foo, B.H. Hameed, Microwave-assisted preparation of oil palm fibre activated carbon for methylene blue adsorption, Chem. Eng. J. 166(2011) 792-795. [72] H. Deng, G. Li, H. Yang, J. Tang, J. Tang, Preparation of activated carbons from cotton stalk by microwave assisted KOH and K2CO3 activation, Chem. Eng. J. 163(2010) 373-381. [73] M.J. Ahmed, S.K. Theydan, Microporous activated carbon from Siris seed pods by microwave-induced KOH activation for metronidazole adsorption, J. Anal. Appl. Pyrolysis 99(2013) 101-109. [74] G. Karaçetin, S. Sivrikaya, M. Imamoǧlu, Adsorption of methylene blue from aqueous solutions by activated carbon prepared from hazelnut husk using zinc chloride, J. Anal. Appl. Pyrolysis 110(2014) 270-276. [75] K.E. Noll, Adsorption Technology for Air and Water Pollution Control, CRC Press, Boca Raton, 1991. [76] Z. Jia, Z. Li, S. Li, Y. Li, R. Zhu, Adsorption performance and mechanism of methylene blue on chemically activated carbon spheres derived from hydrothermally-prepared poly(vinyl alcohol) microspheres, J. Mol. Liq. 220(2016) 56-62. [77] L. Aia, C. Zhang, F. Liao, Y. Wang, M. Li, L. Meng, J. Jiang, Removal of methylene blue from aqueous solution with magnetite loaded multi-wall carbon nanotube:Kinetic, isotherm and mechanism analysis, J. Hazard. Mater. 198(2011) 282-290. [78] Z. Zhang, X. Xu, Wrapping carbon nanotubes with poly (sodium 4-styrenesulfonate) for enhanced adsorption of methylene blue and its mechanism, Chem. Eng. J. 256(2014) 85-92. |
[1] | Jingzhou Guo, Yuanzuo Zou, Bo Shi, Yuan Pu, Jiexin Wang, Dan Wang, Jianfeng Chen. Experimental verification of nanonization enhanced solubility for poorly soluble optoelectronic molecules [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 8-15. |
[2] | Xingjuan Liang, Dehua Xu, Zhengjuan Yan, Jingxu Yang, Xinlong Wang, Zhiye Zhang, Jingli Wu, Honggang Zhen. Solid-liquid phase equilibrium for the system ammonium polyphosphate-urea ammonium nitrate-potassium chloride-water at 273.2 K [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 131-142. |
[3] | Peipei Ai, Huiqing Jin, Jie Li, Xiaodong Wang, Wei Huang. Ultra-stable Cu-based catalyst for dimethyl oxalate hydrogenation to ethylene glycol [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 186-193. |
[4] | Huiqi Wang, Jianpo Ren, Shihao Zhang, Jiayu Dai, Yue Niu, Ketao Shi, Qiuxiang Yin, Ling Zhou. Measurement and correlation of solubility of 9-fluorenone in 11 pure organic solvents from T = 283.15 to 323.15 K [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 235-241. |
[5] | Yuehua Liu, Lili Chen, Shoujun Liu, Song Yang, Ju Shangguan. Role of iron-based catalysts in reducing NOx emissions from coal combustion [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 1-8. |
[6] | Wen Yu, Yiyang Bo, Yiling Luo, Xiyan Huang, Rixiang Zhang, Jiaheng Zhang. Enhancing effect of choline chloride-based deep eutectic solvents with polyols on the aqueous solubility of curcumin-insight from experiment and theoretical calculation [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 160-168. |
[7] | Zhonghao Li, Yuanyuan Yang, Huanong Cheng, Yun Teng, Chao Li, Kangkang Li, Zhou Feng, Hongwei Jin, Xinshun Tan, Shiqing Zheng. Measurement and model of density, viscosity, and hydrogen sulfide solubility in ferric chloride/trioctylmethylammonium chloride ionic liquid [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 210-221. |
[8] | Wei Wang, Romain Lemaire, Ammar Bensakhria, Denis Luart. Thermogravimetric analysis and kinetic modeling of the co-pyrolysis of a bituminous coal and poplar wood [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 53-68. |
[9] | Yun-Zhang Liu, Lu-Yao Zhang, Dan He, Li-Zhen Chen, Zi-Shuai Xu, Jian-Long Wang. Solubility measurement, correlation and thermodynamic properties of 2, 3, 4-trichloro-1, 5-dinitrobenzene in fifteen mono-solvents at temperatures from 278.15 to 323.15 K [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 224-233. |
[10] | Xinyu Liu, Hongliang Sheng, Song He, Chunhua Du, Yuansheng Ma, Chichi Ruan, Chunxiang He, Huaming Dai, Yajun Huang, Yuelei Pan. Insight into pyrolysis of hydrophobic silica aerogels: Kinetics, reaction mechanism and effect on the aerogels [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 266-281. |
[11] | Haodi Tan, Minjiao Yang, Yingquan Chen, Xu Chen, Francesco Fantozzi, Pietro Bartocci, Roman Tschentscher, Federica Barontini, Haiping Yang, Hanping Chen. Preparation of aromatic hydrocarbons from catalytic pyrolysis of digestate [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 1-9. |
[12] | Pengbao Lian, Lizhen Chen, Dan He, Guangyuan Zhang, Zishuai Xu, Jianlong Wang. Crystallization thermodynamics of 2,4(5)-dinitroimidazole in binary solvents [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 173-182. |
[13] | Bingxiao Feng, Lining Hao, Chaoting Deng, Jiaqiang Wang, Hongbing Song, Meng Xiao, Tingting Huang, Quanhong Zhu, Hengjun Gai. A highly hydrothermal stable copper-based catalyst for catalytic wet air oxidation of m-cresol in coal chemical wastewater [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 338-348. |
[14] | Xia Xiong, Zuohua Liu, Changyuan Tao, Yundong Wang, Fangqin Cheng, Hong Li. Reduced power consumption in stirred vessel with high solid loading by equipping punched baffles [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 203-214. |
[15] | Tinghao Jia, Yunbo Yu, Qing Liu, Yao Yang, Ji-Jun Zou, Xiangwen Zhang, Lun Pan. Theoretical and experimental study on the inhibition of jet fuel oxidation by diarylamine [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 225-232. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||