Chinese Journal of Chemical Engineering ›› 2019, Vol. 27 ›› Issue (10): 2251-2260.DOI: 10.1016/j.cjche.2019.05.003
• Reviews • Previous Articles Next Articles
Ling Sun
Received:
2019-01-30
Revised:
2019-05-06
Online:
2020-01-17
Published:
2019-10-28
Supported by:
Ling Sun
作者简介:
Ling Sun,E-mail address:sunling@bjut.edu.cn.
基金资助:
Ling Sun. Structure and synthesis of graphene oxide[J]. Chinese Journal of Chemical Engineering, 2019, 27(10): 2251-2260.
Ling Sun. Structure and synthesis of graphene oxide[J]. 中国化学工程学报, 2019, 27(10): 2251-2260.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2019.05.003
[1] P. Feicht, S. Eigler, Defects in graphene oxide as structural motifs, ChemNanoMat 4(3) (2018) 244-252. [2] B.C. Brodie, On the atomic weight of graphite, Philos. Trans. R. Soc. Lond. 149(1859) 249-259. [3] H.P. Boehm, R. Setton, E. Stumpp, Nomenclature and terminology of graphite intercalation compounds, Carbon 24(2) (1986) 241-245. [4] A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, et al., Superior thermal conductivity of single-layer graphene, Nano Lett. 8(3) (2008) 902-907. [5] A.K. Geim, Graphene:Status and prospects, Science (New York, N.Y.) 324(5934) (2009) 1530-1534. [6] S. Padmajan Sasikala, J. Lim, I.H. Kim, H.J. Jung, T. Yun, T.H. Han, et al., Graphene oxide liquid crystals:A frontier 2D soft material for graphene-based functional materials, Chem. Soc. Rev. 47(16) (2018) 6013-6045. [7] D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide, Chem. Soc. Rev. 39(1) (2010) 228-240. [8] J.Y. Lim, N.M. Mubarak, E.C. Abdullah, S. Nizamuddin, M. Khalid, Inamuddin, Recent trends in the synthesis of graphene and graphene oxide based nanomaterials for removal of heavy metals-A review, J. Ind. Eng. Chem. 66(2018) 29-44. [9] D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, et al., Improved synthesis of graphene oxide, ACS Nano 4(8) (2010) 4806-4814. [10] W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc. 80(6) (1958) 1339. [11] A.M. Dimiev, L.B. Alemany, J.M. Tour, Graphene oxide. Origin of acidity, its instability in water, and a new dynamic structural model, ACS Nano 7(1) (2013) 576-588. [12] B. Konkena, S. Vasudevan, Understanding aqueous dispersibility of graphene oxide and reduced graphene oxide through pKa measurements, J. Phys. Chem. Lett. 3(7) (2012) 867-872. [13] H. He, J. Klinowski, M. Forster, A. Lerf, A new structural model for graphite oxide, Chem. Phys. Lett. 287(1-2) (1998) 53-56. [14] M. Sun, J. Li, Graphene oxide membranes:Functional structures, preparation and environmental applications, Nano Today 20(2018) 121-137. [15] F. Savazzi, F. Risplendi, G. Mallia, N.M. Harrison, G. Cicero, Unravelling some of the structure-property relationships in graphene oxide at low degree of oxidation, J. Phys. Chem. Lett. 9(7) (2018) 1746-1749. [16] T. Szabó, O. Berkesi, P. Forgó, K. Josepovits, Y. Sanakis, D. Petridis, et al., Evolution of surface functional groups in a series of progressively oxidized graphite oxides, Chem. Mater. 18(11) (2006) 2740-2749. [17] A. Lerf, H. He, M. Forster, J. Klinowski, Structure of graphite oxide revisited ‖, J. Phys. Chem. B 102(23) (1998) 4477-4482. [18] T. Nakajima, Y. Matsuo, Formation process and structure of graphite oxide, Carbon 32(3) (1994) 469-475. [19] W. Scholz, H.P. Boehm, Untersuchungen am Graphitoxid. VI. Betrachtungen zur Struktur des Graphitoxids, Z. Anorg. Allg. Chem. 369(3-6) (1969) 327-340. [20] A. Clauss, R. Plass, H.-P. Boehm, U. Hofmann, Untersuchungen zur Struktur des Graphitoxyds, Z. Anorg. Allg. Chem. 291(5-6) (1957) 205-220. [21] G. Ruess, ber das Graphitoxyhydroxyd (Graphitoxyd), Monatshefte fr Chemie 76(3-5) (1947) 381-417. [22] U. Hofmann, R. Holst, Über die Säurenatur und die Methylierung von Graphitoxyd, Ber. dtsch. Chem. Ges. A/B 72(4) (1939) 754-771. [23] J.P. Rourke, P.A. Pandey, J.J. Moore, M. Bates, I.A. Kinloch, R.J. Young, et al., The real graphene oxide revealed:Stripping the oxidative debris from the graphene-like sheets, Angew. Chem. 50(14) (2011) 3173-3177 International ed. in English. [24] S. Kim, S. Zhou, Y. Hu, M. Acik, Y.J. Chabal, C. Berger, et al., Room-temperature metastability of multilayer graphene oxide films, Nat. Mater. 11(2012) 544 EP. [25] Z. Liu, K. Nørgaard, M.H. Overgaard, M. Ceccato, D.M.A. Mackenzie, N. Stenger, et al., Direct observation of oxygen configuration on individual graphene oxide sheets, Carbon 127(2018) 141-148. [26] A.R. Botello-Méndez, S.M.-M. Dubois, A. Lherbier, J.-C. Charlier, Achievements of DFT for the investigation of graphene-related nanostructures, Acc. Chem. Res. 47(11) (2014) 3292-3300. [27] V. Gupta, N. Sharma, U. Singh, M. Arif, A. Singh, Higher oxidation level in graphene oxide, Optik 143(2017) 115-124. [28] K. Andre Mkhoyan, A.W. Contryman, J. Silcox, D.A. Stewart, G. Eda, C. Mattevi, et al., Atomic and electronic structure of graphene-oxide, Nano Lett. 9(3) (2009) 1058-1063. [29] R.J.W.E. Lahaye, H.K. Jeong, C.Y. Park, Y.H. Lee, Density functional theory study of graphite oxide for different oxidation levels, Phys. Rev. B 79(12) (2009), 125435. [30] S. Tang, S. Zhang, Adsorption of epoxy and hydroxyl groups on zigzag graphene nanoribbons:Insights from density functional calculations, Chem. Phys. 392(1) (2012) 33-45. [31] G. Eda, M. Chhowalla, Chemically derived graphene oxide:Towards large-area thin-film electronics and optoelectronics, Advanced materials (Deerfield Beach, Fla.) 22(22) (2010) 2392-2415. [32] D. Pandey, R. Reifenberger, R. Piner, Scanning probe microscopy study of exfoliated oxidized graphene sheets, Surf. Sci. 602(9) (2008) 1607-1613. [33] N.R. Wilson, P.A. Pandey, R. Beanland, R.J. Young, I.A. Kinloch, L. Gong, et al., Graphene oxide:Structural analysis and application as a highly transparent support for electron microscopy, ACS Nano 3(9) (2009) 2547-2556. [34] D.W. Boukhvalov, M.I. Katsnelson, Modeling of graphite oxide, J. Am. Chem. Soc. 130(32) (2008) 10697-10701. [35] M. Lundie, Ž. Šljivančanin, S. Tomić, Analysis of energy gap opening in graphene oxide, J. Phys. Conf. Ser. 526(2014), 12003. [36] E.C. Mattson, H. Pu, S. Cui, M.A. Schofield, S. Rhim, G. Lu, et al., Evidence of nanocrystalline semiconducting graphene monoxide during thermal reduction of graphene oxide in vacuum, ACS Nano 5(12) (2011) 9710-9717. [37] J.J. Hernández Rosas, R.E. Ramírez Gutiérrez, A. Escobedo-Morales, E. Chigo Anota, First principles calculations of the electronic and chemical properties of graphene, graphane, and graphene oxide, J. Mol. Model. 17(5) (2011) 1133-1139. [38] H. Huang, Z. Li, J. She, W. Wang, Oxygen density dependent band gap of reduced graphene oxide, J. Appl. Phys. 111(5) (2012), 54317. [39] J. Chen, X. Zhang, X. Zheng, C. Liu, X. Cui, W. Zheng, Size distribution-controlled preparation of graphene oxide nanosheets with different C/O ratios, Mater. Chem. Phys. 139(1) (2013) 8-11. [40] X. Jiang, J. Nisar, B. Pathak, J. Zhao, R. Ahuja, Graphene oxide as a chemically tunable 2-D material for visible-light photocatalyst applications, J. Catal. 299(2013) 204-209. [41] S. Zhang, J. Zhou, Q. Wang, P. Jena, Structure, stability, and property modulations of stoichiometric graphene oxide, J. Phys. Chem. C 117(2) (2013) 1064-1070. [42] S.D. Dabhi, S.D. Gupta, P.K. Jha, Structural, electronic, mechanical, and dynamical properties of graphene oxides:A first principles study, J. Appl. Phys. 115(20) (2014), 203517. [43] I. Guilhon, F. Bechstedt, S. Botti, M. Marques, L.K. Teles, Thermodynamic, electronic, and optical properties of graphene oxide:A statistical ab initio approach, Phys. Rev. B 95(24) (2017), 245427. [44] D.L. Duong, G. Kim, H.-K. Jeong, Y.H. Lee, Breaking AB stacking order in graphite oxide:Ab initio approach, Phys. Chem. Chem. Phys. 12(7) (2010) 1595-1599. [45] Kotrusz P. Viera, M. Jergel, T. Susi, A. Mittelberger, V. Vretenár, et al., Chemical oxidation of graphite:Evolution of the structure and properties, J. Phys. Chem. C 122(1) (2018) 929-935. [46] N.I. Kovtyukhova, Y. Wang, A. Berkdemir, R. Cruz-Silva, M. Terrones, V.H. Crespi, et al., Non-oxidative intercalation and exfoliation of graphite by Brønsted acids, Nat. Chem. 6(2014) 957 EP. [47] D. Cortés Arriagada, Global and local reactivity indexes applied to understand the chemistry of graphene oxide and doped graphene, J. Mol. Model. 19(2) (2013) 919-930. [48] L. Staudenmaier, Verfahren zur Darstellung der Graphitsäure, Ber. Dtsch. Chem. Ges. 31(2) (1898) 1481-1487. [49] L. Fu, Liu Hongbo, Zou Yanhong, Li Bo, Technology research on oxidative degree of graphite oxide prepared by Hummers method (in Chinese), Carbon 124(4) (2005) 10-14. [50] J. Shen, Y. Hu, M. Shi, X. Lu, C. Qin, C. Li, et al., Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets, Chem. Mater. 21(15) (2009) 3514-3520. [51] C.-Y. Su, Y. Xu, W. Zhang, J. Zhao, X. Tang, C.-H. Tsai, et al., Electrical and spectroscopic characterizations of ultra-large reduced graphene oxide monolayers, Chem. Mater. 21(23) (2009) 5674-5680. [52] L. Sun, B. Fugetsu, Mass production of graphene oxide from expanded graphite, Mater. Lett. 109(2013) 207-210. [53] S. Eigler, M. Enzelberger-Heim, S. Grimm, P. Hofmann, W. Kroener, A. Geworski, et al., Wet chemical synthesis of graphene, Adv. Mater. 25(26) (2013) 3583-3587. [54] J. Chen, Y. Li, L. Huang, C. Li, G. Shi, High-yield preparation of graphene oxide from small graphite flakes via an improved Hummers method with a simple purification process, Carbon 81(2015) 826-834. [55] V. Panwar, A. Chattree, K. Pal, A new facile route for synthesizing of graphene oxide using mixture of sulfuric-nitric-phosphoric acids as intercalating agent, Physica E:Low-dimensional Systems and Nanostructures 73(2015) 235-241. [56] L. Peng, Z. Xu, Z. Liu, Y. Wei, H. Sun, Z. Li, et al., An iron-based green approach to 1-h production of single-layer graphene oxide, Nat. Commun. 6(2015) 5716. [57] M. Rosillo-Lopez, C.G. Salzmann, A simple and mild chemical oxidation route to high-purity nano-graphene oxide, Carbon 106(2016) 56-63. [58] H. Yu, B. Zhang, C. Bulin, R. Li, R. Xing, High-efficient synthesis of graphene oxide based on improved Hummers method, Sci. Rep. 6(2016), 36143. [59] A.M. Dimiev, G. Ceriotti, A. Metzger, N.D. Kim, J.M. Tour, Chemical mass production of graphene nanoplatelets in ~100% yield, ACS Nano 10(1) (2016) 274-279. [60] S. Pei, Q. Wei, K. Huang, H.-M. Cheng, W. Ren, Green synthesis of graphene oxide by seconds timescale water electrolytic oxidation, Nat. Commun. 9(1) (2018) 145. [61] P. Ranjan, S. Agrawal, A. Sinha, T.R. Rao, J. Balakrishnan, A.D. Thakur, A low-cost non-explosive synthesis of graphene oxide for scalable applications, Sci. Rep. 8(1) (2018), 12007. [62] R.J. Beckett, R.C. Croft, The structure of graphite oxide, J. Phys. Chem. 56(8) (1952) 929-935. [63] W.K. Park, Y. Yoon, Y.H. Song, S.Y. Choi, S. Kim, Y. Do, et al., High-efficiency exfoliation oflarge-area mono-layer graphene oxidewith controlleddimension, Sci. Rep. 7(1) (2017), 16414. [64] J. Chen,B.Yao, C. Li, G. Shi, An improved Hummers method for eco-friendly synthesis of graphene oxide, Carbon 64(2013) 225-229. [65] N.M. Huang, H.N. Lim, C.H. Chia, M.A. Yarmo, M.R. Muhamad, Simple roomtemperature preparation of high-yield large-area graphene oxide, Int. J. Nanomedicine 6(2011) 3443-3448. [66] Z. Sofer, J. Luxa, O. Jankovský, D. Sedmidubský, T. Bystroň, M. Pumera, Synthesis of graphene oxide by oxidation of graphite with ferrate(VI) compounds:Myth or reality? Angew. Chem. 128(39) (2016) 12144-12148. [67] H. Yang, H. Li, J. Zhai, L. Sun, H. Yu, Simple synthesis of graphene oxide using ultrasonic cleaner from expanded graphite, Ind. Eng. Chem. Res. 53(46) (2014) 17878-17883. [68] N.I. Kovtyukhova, P.J. Ollivier, B.R. Martin, T.E. Mallouk, S.A. Chizhik, E.V. Buzaneva, et al., Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations, Chem. Mater. 11(3) (1999) 771-778. [69] M. Liu, X. Zhang, W. Wu, T. Liu, Y. Liu, B. Guo, et al., One-step chemical exfoliation of graphite to similar to 100% few-layer graphene with high quality and large size at ambient temperature, Chem. Eng. J. 355(2019) 181-185. [70] T. Liu, X. Zhang, M. Liu, W. Wu, K. Liu, Y. Liu, et al., One-step room-temperature exfoliation of graphite to 100% few-layer graphene with high quality and large size, J. Mater. Chem. C 6(31) (2018) 8343-8348. [71] A.M. Dimiev, J.M. Tour, Mechanism of graphene oxide formation, ACS Nano 8(3) (2014) 3060-3068. [72] M. Inagaki, N. Iwashita, E. Kouno, Potential change with intercalation of sulfuric acid into graphite by chemical oxidation, Carbon 28(1) (1990) 49-55. [73] A.M. Rodríguez, P.S.V. Jiménez, Some new aspects of graphite oxidation at 0℃ in a liquid medium. A mechanism proposal for oxidation to graphite oxide, Carbon 24(2) (1986) 163-167. [74] N.E. Sorokina, M.A. Khaskov, V.V. Avdeev, I.V. Nikol'skaya, Reaction of graphite with sulfuric acid in the presence of KMnO4, Russ. J. Gen. Chem. 75(2) (2005) 162-168. [75] P. Scharff, Z.-Y. Xu, E. Stumpp, K. Barteczko, Reversibility of the intercalation of nitric acid into graphite, Carbon 29(1) (1991) 31-37. [76] A.M. Dimiev, S.M. Bachilo, R. Saito, J.M. Tour, Reversible formation of ammonium persulfate/sulfuric acid graphite intercalation compounds and their peculiar Raman spectra, ACS Nano 6(9) (2012) 7842-7849. [77] T. Liu, R. Zhang, X. Zhang, K. Liu, Y. Liu, P. Yan, One-step room-temperature preparation of expanded graphite, Carbon 119(2017) 544-547. [78] F. Kang, T.-Y. Zhang, Y. Leng, Electrochemical synthesis of sulfate graphite intercalation compounds with different electrolyte concentrations, J. Phys. Chem. Solids 57(6-8) (1996) 883-888. [79] M. Inagaki, N. Iwashita, Y. Hishiyama, Criteria for the intercalation of sulfuric acid, Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 244(1) (1994) 89-94. [80] M. Inagaki, N. Iwashita, Large discharge capacity from carbon electrodes in sulfuric acid with oxidant, J. Power Sources 52(1) (1994) 69-75. [81] N. Morimoto, H. Suzuki, Y. Takeuchi, S. Kawaguchi, M. Kunisu, C.W. Bielawski, et al., Real-time, in situ monitoring of the oxidation of graphite:Lessons learned, Chem. Mater. 29(5) (2017) 2150-2156. [82] M. Inagaki, Carbon materials structure, texture and intercalation, Solid State Ionics 86(1996) 833-839. [83] M. Inagaki, N. Iwashita, Chemical charging and electrochemical discharging through graphite intercalation compounds with sulfuric acid, Solid State Ionics 70-71(1994) 425-428. [84] Y.-R. Shin, S.-M. Jung, I.-Y. Jeon, J.-B. Baek, The oxidation mechanism of highly ordered pyrolytic graphite in a nitric acid/sulfuric acid mixture, Carbon 52(2013) 493-498. [85] J. Xu, Y. Dou, Z. Wei, J. Ma, Y. Deng, Y. Li, et al., Recent progress in graphite intercalation compounds for rechargeable metal (Li, Na, K, Al)-ion batteries, Advanced science (Weinheim, Baden-Wurttemberg, Germany) 4(10) (2017), 1700146. [86] S. Pan, I.A. Aksay, Factors controlling the size of graphene oxide sheets produced via the graphite oxide route, ACS Nano 5(5) (2011) 4073-4083. [87] L. Dong, J. Yang, M. Chhowalla, K.P. Loh, Synthesis and reduction of large sized graphene oxide sheets, Chem. Soc. Rev. 46(23) (2017) 7306-7316. [88] X. Chen, B.Chen,Direct observation, molecular structure,andlocation ofoxidation debris on graphene oxide nanosheets, Environ. Sci. Technol. 50(16) (2016) 8568-8577. [89] J. Zhao, S. Pei, W. Ren, L. Gao, H.-M. Cheng, Efficient preparation of large-area graphene oxide sheets for transparent conductive films, ACS Nano 4(9) (2010) 5245-5252. [90] C. Zhu, S. Guo, Y. Fang, S. Dong, Reducing sugar:New functional molecules for the green synthesis of graphene nanosheets, ACS Nano 4(4) (2010) 2429-2437. [91] S.Y. Jeong, S.H. Kim, J.T. Han, H.J. Jeong, S. Yang, G.-W. Lee, High-performance transparent conductive films using rheologically derived reduced graphene oxide, ACS Nano 5(2) (2011) 870-878. [92] P.G. Karagiannidis, S.A. Hodge, L. Lombardi, F. Tomarchio, N. Decorde, S. Milana, et al., Microfluidization of graphite and formulation of graphene-based conductive inks, ACS Nano 11(3) (2017) 2742-2755. [93] J. Fu, C. Wei, W. Wang, J.L. Wei, J. Lv, Studies of structure and properties of graphene oxide prepared by ball milling, Mater. Res. Innov. 19(2015) S277-S280. [94] P. Dash, T. Dash, T.K. Rout, A.K. Sahu, S.K. Biswal, B.K. Mishra, Preparation of graphene oxide by dry planetary ball milling process from natural graphite, RSC Adv. 6(15) (2016) 12657-12668. [95] M.D. Moreira, V.R. Coluci, Initial stages of graphene oxide cracking in basic media, Carbon 142(2019) 217-223. [96] R. Yuan, J. Yuan, Y. Wu, L. Chen, H. Zhou, J. Chen, Efficient synthesis of graphene oxide and the mechanisms of oxidation and exfoliation, Appl. Surf. Sci. 416(2017) 868-877. [97] J. Chen, F. Chi, L. Huang, M. Zhang, B. Yao, Y. Li, et al., Synthesis of graphene oxide sheets with controlled sizes from sieved graphite flakes, Carbon 110(2016) 34-40. [98] H. Geng, B. Yao, J. Zhou, K. Liu, G. Bai, W. Li, et al., Size fractionation of graphene oxide nanosheets via controlled directional freezing, J. Am. Chem. Soc. 139(36) (2017) 12517-12523. [99] S. Zhang, Y. Li, J. Sun, J. Wang, C. Qin, L. Dai, Size fractionation of graphene oxide sheets assisted by circular flow and their graphene aerogels with size-dependent adsorption, RSC Adv. 6(78) (2016) 74053-74060. [100] J. Chen, Y. Li, L. Huang, N. Jia, C. Li, G. Shi, Size fractionation of graphene oxide sheets via filtration through track-etched membranes, Adv. Mater. 27(24) (2015) 3654-3660. [101] W. Zhang, X. Zou, H. Li, J. Hou, J. Zhao, J. Lan, et al., Size fractionation of graphene oxide sheets by the polar solvent-selective natural deposition method, RSC Adv. 5(1) (2015) 146-152. [102] X. Lin, X. Shen, Q. Zheng, N. Yousefi, L. Ye, Y.-W. Mai, et al., Fabrication of highlyaligned, conductive, and strong graphene papers using ultralarge graphene oxide sheets, ACS Nano 6(12) (2012) 10708-10719. [103] X. Wang, H. Bai, G. Shi, Size fractionation of graphene oxide sheets by pH-assisted selective sedimentation, J. Am. Chem. Soc. 133(16) (2011) 6338-6342. |
[1] | Yingmeng Zhang, Luting Liu, Qingwei Deng, Wanlin Wu, Yongliang Li, Xiangzhong Ren, Peixin Zhang, Lingna Sun. Hybrid CuO-Co3O4 nanosphere/RGO sandwiched composites as anode materials for lithium-ion batteries [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 185-192. |
[2] | Jing Gao, Zhijun Ma, Fuli Liu, Cunxin Chen. Synthesis of carbon-coated cobalt ferrite core–shell structure composite: A method for enhancing electromagnetic wave absorption properties by adjusting impedance matching [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 206-217. |
[3] | Siwen Gu, Lei Zhang, Yu Zhuang, Weida Li, Jian Du, Cheng Shao. Two-tier control structure design methodology applied to heat exchanger networks [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 231-244. |
[4] | Hualiang An, Rui Wang, Wenhao Wang, Daolai Sun, Xinqiang Zhao, Yanji Wang. A core–shell Ni/SiO2@TiO2 catalyst for highly selective one-step synthesis of 2-propylheptanol from n-pentanal [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 104-112. |
[5] | Xing Zhang, Jingfeng Wu, Junhao Chen, Liang Lu, Lingjun Zhu, Shurong Wang. Production of aromatic hydrocarbons by co-cracking of bio-oil and ethanol over Ga2O3/HZSM-5 catalysts [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 126-133. |
[6] | Xin Yong, Hong Chen, Huawang Zhao, Miao Wei, Yingnan Zhao, Yongdan Li. Insight into SO2 poisoning and regeneration of one-pot synthesized Cu-SSZ-13 catalyst for selective reduction of NOx by NH3 [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 184-193. |
[7] | Tong Qin, Zhenhao Xi, Ling Zhao, Weikang Yuan. Monte Carlo simulation of sequential structure control of AN-MA-IA aqueous copolymerization by different operation modes [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 231-242. |
[8] | Jialu Zhang, Xiang Liu, Shuai Liu, Yuxing Li, Qihui Hu, Wuchang Wang. Microscopic morphology evolution of the crystal structure of tetrahydrofuran hydrate under flowing condition [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 103-110. |
[9] | Yuanjie Li, Qiuxiang Yin, Meijing Zhang, Ying Bao, Baohong Hou, Jingkang Wang, Jiting Huang, Ling Zhou. Characterization and structure analysis of the heterosolvate of erythromycin thiocyanate [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 268-274. |
[10] | Mingxia Tian, Aili Wang, Hengbo Yin. Evolution of copper nanowires through coalescing of copper nanoparticles induced by aliphatic amines and their electrical conductivities in polyester films [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 284-291. |
[11] | Fangyou Yan, Wei Li, Jinli Zhang. Simultaneous synthesis of heat-integrated water networks by a nonlinear program: Considering the wastewater regeneration reuse [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 402-411. |
[12] | Yanliang Zhou, Qianjin Sai, Zhenni Tan, Congying Wang, Xiuyun Wang, Bingyu Lin, Jun Ni, Jianxin Lin, Lilong Jiang. Highly efficient subnanometer Ru-based catalyst for ammonia synthesis via an associative mechanism [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 177-184. |
[13] | Shaoxiang Cai, Han Yan, Qiuyi Wang, He Han, Ru Li, Zhichao Lou. Top-down strategy for bamboo lignocellulose-derived carbon heterostructure with enhanced electromagnetic wave dissipation [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 360-369. |
[14] | Baowen Wang, Zhongyuan Cai, Heyu Li, Yanchen Liang, Tao Jiang, Ning Ding, Haibo Zhao. Reaction characteristics investigation of CeO2-enhanced CaSO4 oxygen carrier with lignite [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 319-328. |
[15] | Jiankang Wang, Yajing Wang, Zhongping Yao, Zhaohua Jiang. Metal-organic framework-derived Ni doped Co3S4 hierarchical nanosheets as a monolithic electrocatalyst for highly efficient hydrogen evolution reaction in alkaline solution [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 380-388. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||