Chinese Journal of Chemical Engineering ›› 2020, Vol. 28 ›› Issue (11): 2723-2732.DOI: 10.1016/j.cjche.2020.06.024
• Review • Previous Articles Next Articles
Xin Dai1,2, Jin Bai3, Ping Yuan4, Shiyu Du5, Dongtao Li1,2, Xiaodong Wen3, Wen Li3
Received:
2020-05-21
Revised:
2020-06-11
Online:
2020-12-31
Published:
2020-11-28
Contact:
Jin Bai, Shiyu Du
Supported by:
Xin Dai1,2, Jin Bai3, Ping Yuan4, Shiyu Du5, Dongtao Li1,2, Xiaodong Wen3, Wen Li3
通讯作者:
Jin Bai, Shiyu Du
基金资助:
Xin Dai, Jin Bai, Ping Yuan, Shiyu Du, Dongtao Li, Xiaodong Wen, Wen Li. The application of molecular simulation in ash chemistry of coal[J]. Chinese Journal of Chemical Engineering, 2020, 28(11): 2723-2732.
Xin Dai, Jin Bai, Ping Yuan, Shiyu Du, Dongtao Li, Xiaodong Wen, Wen Li. The application of molecular simulation in ash chemistry of coal[J]. 中国化学工程学报, 2020, 28(11): 2723-2732.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2020.06.024
[1] X. Dai, J. Bai, Q. Huang, Z. Liu, X. Bai, C.-T. Lin, W. Li, W. Guo, X. Wen, S. Du, Coal ash fusion properties from molecular dynamics simulation:The role of calcium oxide, Fuel 216(2018) 760-767. [2] C. Higman, S. Tam, Hydrogenation, and gas treating for the production of chemicals and fuels, chemical reviews, Chem. Rev. 114(2014) 1673-1708. [3] J.H. Patterson, H.J. Hurst, Ash and slag qualities of Australian bituminous coals for use in slagging gasifiers, Fuel 79(2000) 1671-1678. [4] BP Statistical Review of World Energy 2017, In, BP Public Limited Company, London, 2017. [5] W. Song, L. Tang, X. Zhu, Y. Wu, Y. Rong, Z. Zhu, S. Koyama, Fusibility and flow properties of coal ash and slag, Fuel 88(2009) 297-304. [6] S.A. Benson, E.A. Sondreal, J.P. Hurley, Status of coal ash behavior research, Fuel Process. Technol. 44(1995) 1-12. [7] L. Kong, J. Bai, Z. Bai, Z. Guo, W. Li, Effects of CaCO3 on slag flow properties at high temperatures, Fuel 109(2013) 76-85. [8] S.K. Gupta, T.F. Wall, R.A. Creelman, R.P. Gupta, Ash fusion temperatures and the transformations of coal ash particles to slag, Fuel Process. Technol. 56(1998) 33-43. [9] W. Song, L. Tang, X. Zhu, Y. Wu, Z. Zhu, S. Koyama, Flow properties and rheology of slag from coal gasification, Fuel 89(2010) 1709-1715. [10] W. Song, Y. Sun, Y. Wu, Z. Zhu, S. Koyama, Measurement and simulation of flow properties of coal ash slag in coal gasification, AIChE J. 57(2011) 801-818. [11] W. Song, L. Tang, Z. Zhu, Y. Ninomiya, Rheological evolution and crystallization response of molten coal ash slag at high temperatures, AIChE J. 59(2013) 2726-2742. [12] S.V. Vassilev, K. Kitanob, S. Takedab, T. Tsurueb, Influence of mineral and chemical composition of coal ashes on their fusibility, Fuel Process. Technol. 45(1995) 27-51. [13] S.V. Vassilev, J.M.D. Tascon, Methods for characterization of inorganic and mineral matter in coal:A critical overview, Energy Fuel 17(2003) 271-281. [14] S.K. Gupta, R.P. Gupta, G.W. Bryant, T.F. Wall, The effect of potassium on the fusibility of coal ashes with high silica and alumina levels, Fuel 77(1998) 1195-1201. [15] L.X. Kong, J. Bai, Z.Q. Bai, Z.X. Guo, W. Li, Improvement of ash flow properties of low-rank coal for entrained flow gasifier, Fuel 120(2014) 122-129. [16] L. Kong, J. Bai, W. Li, X. Wen, X. Li, Z. Bai, Z. Guo, H. Li, The internal and external factor on coal ash slag viscosity at high temperatures, part 3:Effect of CaO on the pattern of viscosity-temperature curves of slag, Fuel 179(2016) 10-16. [17] X. Chen, L. Kong, J. Bai, X. Dai, H. Li, Z. Bai, W. Li, The key for sodium-rich coal utilization in entrained flow gasifier:The role of sodium on slag viscositytemperature behavior at high temperatures, Appl. Energy 206(2017) 1241-1249. [18] H.J. Hurst, F. Novak, J.H. Patterson, Viscosity measurements and empirical predictions for some model gasifier slags, Fuel 78(1999) 439-444. [19] D.P. Plandau, K.K. Mon, H.B. Schuttler, Computer Simulation Studies in Condensed Matter Physics Ⅱ, Recent Developments Proceeding of the Workshop, Athens, GA, USA, 198912-20. [20] Y Hu, H.L. Liu, Molecular engineering and chemical engineering, Processing Chemistry 7(1995) 235-249. [21] J.J. de Pablo, F.A. Escobedo, Molecular simulations in chemical engineering:Present and future, AIChE J. 48(2002) 801-818. [22] Y. Zhang, E.J. Maginn, Toward fully in Silico melting point prediction using molecular simulations, J. Chem. Theory Comput. 9(2013) 1592-1599. [23] E.J. Maginn, From discovery to data:What must happen for molecular simulation to become a mainstream chemical engineering tool, AIChE J. 55(2009) 2716-2721. [24] Y. Kim, H. Park, Estimation of TiO2-FeO-Na2O slag viscosity through molecular dynamics simulations for an energy efficient ilmenite smelting process, Sci. Rep. 9(2019) 1-12. [25] Y.G. Li, J.C. Liu, Molecular simulation in chemical engineering, Modern Chemical Industry 21(2001) 10-15. [26] A.C. Fieldner, W.A. Selvig, W.L. Parker, Comparison of the standard gas furnace and micropyrometer methods for determining the fusibility of coal ash, Journal of Industrial and Engineering Chemistry-US 14(1922) 695-698. [27] A.C. Fieldner, W.A. Selvig, Relation of ash composition to the uses of coal, Transactions of the American Institute of Mining and Metallurgical Engineers 74(1927) 456-468. [28] T.G. Yan, J. Bai, L.X. Kong, Z.Q. Bai, W. Li, J. Xu, Effect of SiO2/Al2O3 on fusion behavior of coal ash at high temperature, Fuel 193(2017) 275-283. [29] W.J. Song, L.H. Tang, X.D. Zhu, Y.Q. Wu, Z.B. Zhu, S. Koyama, Effect of coal ash composition on ash fusion temperatures, Energy Fuel 24(2010) 182-189. [30] B. Liu, Q. He, Z. Jiang, R. Xu, B. Hu, Relationship between coal ash composition and ash fusion temperatures, Fuel 105(2013) 293-300. [31] T.F. Wall, R.A. Creelman, R.P. Gupta, S.K. Gupta, C. Coin, A. Lowe, Coal ash fusion temperatures-new characterization techniques, and implications for slagging and fouling, Prog. Energy Combust. Sci. 24(1998) 345-353. [32] S.A. Lolja, H. Haxhi, R. Dhimitri, S. Drushku, A. Malja, Correlation between ash fusion temperatures and chemical composition in Albanian coal ashes, Fuel 81(2002) 2257-2261. [33]. Standardization Administration of the People's Republic of China, Determination of Fusibility of Coal Ash. GB/T219-2008, Standards Press of China, Beijing, 2008. [34] G.W. Bryant, J.A. Lucas, S.K. Gupta, T.F. Wall, Use of thermomechanical analysis to quantify the flux additions necessary for slag flow in slagging gasifiers fired with coal, Energy Fuel 12(1998) 257-261. [35] S.K.G. Gupta, R.P. Bryant, G.W. Juniper, T.F. L Wall, Thermomechanical Analysis and Alternative Ash Fusibility Temperatures, Kluwer Academic Plenum Publishers, New York, 1999. [36] T. Yan, L. Kong, J. Bai, Z. Bai, W. Li, Thermomechanical analysis of coal ash fusion behavior, Chem. Eng. Sci. 147(2016) 74-82. [37] J. Bai, W. Li, Z. Bai, Effects of mineral matter and coal blending on gasification, Energy Fuel 25(2011) 1127-1131. [38] J. Bai, W. Li, B.Q. Li, Characterization of low-temperature coal ash behaviors at high temperatures under reducing atmosphere, Fuel 87(2008) 583-591. [39] H. Yuan, Q. Liang, X. Gong, Crystallization of coal ash slags at high temperatures and effects on the viscosity, Energy Fuel 26(2012) 3717-3722. [40] J. Xu, X. Liu, F. Zhao, F.C. Wang, Q.H. Guo, G.S. Yu, Study on fusibility and flow behavior of high-calcium coal ash, Journal of Chemical Engineering of Japan 47(2014) 711-716. [41] S. Chakravarty, A. Mohanty, A. Banerjee, R. Tripathy, G.K. Mandal, M.R. Basariya, M. Sharma, Composition, mineral matter characteristics and ash fusion behavior of some Indian coals, Fuel 150(2015) 96-101. [42] W.W. Xuan, K.J. Whitty, Q.L. Guan, D.P. Bi, Z.H. Zhan, J.S. Zhang, Influence of SiO2/Al2O3 on crystallization characteristics of synthetic coal slags, Fuel 144(2015) 103-110. [43] J. Bai, W. Li, C.Z. Li, Z.Q. Bai, B.Q. Li, Influences of minerals transformation on the reactivity of high temperature char gasification, Fuel Process. Technol. 91(2010) 404-409. [44] L. Kong, J. Bai, Z. Bai, Z. Guo, W. Li, Effects of CaCO3 on slag flow properties at high temperatures, Fuel 109(2013) 76-85. [45] H.J. Hurst, F. Novak, J.H. Patterson, Phase diagram approach to the fluxing effect of additions of CaCO3 on Australian coal ashes, Energy Fuel 10(1996) 1215-1219. [46] E. Jaka, S. Degterovb, P.C. Hayesa, A.D. Peltonb, Thermodynamic modelling of the system Al2O3-SiO2-CaO-FeO-Fe2O3 to predict the flux requirements for coal ash slags, Fuel 77(1998) 77-84. [47] C. Bale, P. Chartrand, S.A. Degterov, G. Eriksson, K. Hack, R. Ben Mahfoud, J. Melancon, A.D. Pelton, S. Petersen, FactSage thermochemical software and databases, Calphad-Computer Coupling of Phase Diagrams and Thermochemistry 26(2002) 189-228. [48] C.W. Bale, E. Belisle, P. Chartrand, S.A. Decterov, G. Eriksson, K. Hack, I.H. Jung, Y.B. Kang, J. Melancon, A.D. Pelton, C. Robelin, S. Petersen, FactSage thermochemical software and databases-recent developments, Calphad-Computer Coupling of Phase Diagrams and Thermochemistry 33(2009) 295-311. [49] C.W. Bale, E. Belisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I. H. Jung, Y.B. Kang, J. Melancon, A.D. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer, M.A. Van Ende, FactSage thermochemical software and databases, 2010-2016, Calphad-Computer Coupling of Phase Diagrams and Thermochemistry 54(2016) 35-53. [50] W.J. Song, L.H. Tang, X.D. Zhu, Y.Q. Wu, Z.B. Zhu, S. Koyama, Prediction of Chinese coal ash fusion temperatures in Ar and H2 atmospheres, Energy Fuel 23(2009) 1990-1997. [51] L. Kong, J. Bai, W. Li, X. Wen, X. Liu, X. Li, Z. Bai, Z. Guo, H. Li, The internal and external factor on coal ash slag viscosity at high temperatures, part 2:Effect of residual carbon on slag viscosity, Fuel 158(2015) 976-982. [52] A.Y. Ilyushechkin, S.S. Hla, D.G. Roberts, N.N. Kinaev, The effect of solids and phase compositions on viscosity behaviour and T-CV of slags from Australian bituminous coals, J. Non-Cryst. Solids 357(2011) 893-902. [53] W.W. Xuan, K.J. Whitty, Q.L. Guan, D.P. Bi, J.S. Zhang, Influence of isothermal temperature and cooling rates on crystallization characteristics of a synthetic coal slag, Fuel 137(2014) 193-199. [54] W.W. Xuan, K.J. Whitty, Q.L. Guan, D.P. Bi, Z.H. Zhan, J.S. Zhang, Influence of CaO on crystallization characteristics of synthetic coal slags, Energy Fuel 28(2014) 6627-6634. [55] W.W. Xuan, K.J. Whitty, Q.L. Guan, D.P. Bi, Z.H. Zhan, J.S. Zhang, Influence of Fe2O3 and atmosphere on crystallization characteristics of synthetic coal slags, Energy Fuel 29(2015) 405-412. [56] W. Xuan, J. Zhang, D. Xia, Crystallization characteristics of a coal slag and influence of crystals on the sharp increase of viscosity, Fuel 176(2016) 102-109. [57] W.W. Xuan, Q. Wang, J.S. Zhang, D.H. Xia, Influence of silica and alumina (SiO2+Al2O3) on crystallization characteristics of synthetic coal slags, Fuel 189(2017) 39-45. [58] B. Ding, X. Zhu, H. Wang, X.Y. He, Y. Tan, Numerical investigation on phase change cooling and crystallization of a molten blast furnace slag droplet, Int. J. Heat Mass Transf. 118(2018) 471-479. [59] H. Maekawa, T. Maekawa, K. Kawamura, T. Yokokawa, The structural groups of alkali silicate-glasses determined form Si-29 MAS-NMR, J. Non-Cryst. Solids 127(1991) 53-64. [60] P. Zhang, P.J. Grandinetti, J.F. Stebbins, Anionic species determination in CaSiO3 glass using two-dimensional Si-29 NMR, J. Phys. Chem. B 101(1997) 4004-4008. [61] M. Paris, The two aluminum sites in the Al-27 MAS NMR spectrum of kaolinite:Accurate determination of isotropic chemical shifts and quadrupolar interaction parameters, Am. Mineral. 99(2014) 393-400. [62] B.W. Veal, D.J. Lam, A.P. Paulikas, W.Y. Ching, XPS study of CaO in sodium-silicate glass, J. Non-Cryst. Solids 49(1982) 309-320. [63] J.H. Park, Structure-property relationship of CaO-MgO-SiO2 slag:Quantitative analysis of Raman spectra, Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science 44(2013) 938-947. [64] S.H. Shin, J.W. Cho, S.H. Kim, Structural investigations of CaO-CaF2-SiO2-Si3N4 based glasses by Raman spectroscopy and XPS considering its application to continuous casting of steels, Mater. Des. 76(2015) 1-8. [65] Z. Ma, J. Bai, X. Wen, X. Li, Y. Shi, Z. Bai, L. Kong, Z. Guo, J. Yan, W. Li, Mineral transformation in char and its effect on coal char gasification reactivity at high temperatures part 3:Carbon thermal reaction, Energy Fuel 28(2014) 3066-3073. [66] H.J. Hurst, F. Novak, J.H. Patterson, Viscosity measurements and empirical predictions for some model gasifier slags, Fuel 78(1999) 439-444. [67] H.J. Hurst, J.H. Patterson, A. Quintanar, Viscosity measurements and empirical predictions for some model gasifier slags-Ⅱ, Fuel 79(2000) 1797-1799. [68] J.C.V. Dyka, F.B. Waanders, S.A. Benson, M.L. Laumb, K. Hack, Viscosity predictions of the slag composition of gasified coal, utilizing FactSage equilibrium modelling, Fuel 88(2009) 67-74. [69] G.J. Browning, G.W. Bryant, H.J. Hurst, J.A. Lucas, T.F. Wall, An empirical method for the prediction of coal ash slag viscosity, Energy Fuel 17(2003) 731-737. [70] L.X. Kong, J. Bai, W. Li, X.D. Wen, X.M. Li, Z.Q. Bai, Z.X. Guo, H.Z. Li, The internal and external factor on coal ash slag viscosity at high temperatures, part 1:Effect of cooling rate on slag viscosity, measured continuously, Fuel 158(2015) 968-975. [71] L. Kong, J. Bai, W. Li, X. Wen, X. Li, Z. Bai, Z. Guo, H. Li, The internal and external factor on coal ash slag viscosity at high temperatures, part 1:Effect of cooling rate on slag viscosity, measured continuously, Fuel 158(2015) 968-975. [72] H.W. Nesbitt, G.M. Bancroft, G.S. Henderson, R. Ho, K.N. Dalby, Y. Huang, Z. Yan, Bridging, non-bridging and free (O2-) oxygen in Na2O-SiO2 glasses:An X-ray photoelectron spectroscopic (XPS) and nuclear magnetic resonance (NMR) study, J. Non-Cryst. Solids 357(2011) 170-180. [73] J. Hafner, Ab-initio simulations of materials using VASP:Density-functional theory and beyond, J. Comput. Chem. 29(2008) 2044-2078. [74] A. Abbas, J.M. Delaye, D. Ghaleb, G. Calas, Molecular dynamics study of the structure and dynamic behavior at the surface of a silicate glass, J. Non-Cryst. Solids 315(2003) 187-196. [75] P.M. Agrawal, L.M. Raff, M.T. Hagan, R. Komanduri, Molecular dynamics investigations of the dissociation of SiO2 on an ab initio potential energy surface obtained using neural network methods, J. Chem. Phys. 124(2006) 134306. [76] L. Barbieri, V. Cannillo, C. Leonelli, M. Montorsi, P. Mustarelli, C. Siligardi, Experimental and MD simulations study of CaO-ZrO2-SiO2 glasses, J. Phys. Chem. B 107(2003) 6519-6525. [77] A. Slepoy, A.P. Thompson, S.J. Plimpton, A constant-time kinetic Monte Carlo algorithm for simulation of large biochemical reaction networks, J. Chem. Phys. 128(2008) 205101. [78] J.K. Brennan, M. Lísal, J.D. Moore, S. Izvekov, I.V. Schweigert, J.P. Larentzos, Coarsegrain model simulations of nonequilibrium dynamics in heterogeneous materials, J. Phys. Chem. Lett. 5(2014) 2144-2149. [79] X. Dai, J. He, J. Bai, Q. Huang, X. Wen, L. Xie, K. Luo, J. Zhang, W. Li, S. Du, Ash fusion properties from molecular dynamics simulation:Role of the ratio of silicon and aluminum, Energy Fuel 30(2016) 2407-2413. [80] X. Dai, J. Bai, Q. Huang, Z. Liu, X. Bai, R. Cao, X. Wen, W. Li, S. Du, Viscosity temperature properties from molecular dynamics simulation:The role of calcium oxide, sodium oxide and ferrous oxide, Fuel 237(2019) 163-169. [81] C. Ma, N. Skoglund, M. Carlborg, M. Brostrom, Viscosity of molten CaO-K2O-SiO2 woody biomass ash slags in relation to structural characteristics form molecular dynamics simulation, Chem Eng Sci 215(2020), 115464. [82] H.H. Liu, M.F. Du, Y.K. Wang, M.Q. Li, Characteristics and mechanism on coal ash fusion, J. Mater. Sci. Eng. 176(2018) 985-992. [83] Z.L. Yang, M.F. Du, Y.L. Chen, R.L. Li, L.X. Xu, M.Q. Li, Quantum chemistry study of doping kaolin in coal ash, J. Mater. Sci. Eng. 174(2018) 568-572. [84] C.L. Wu, B.B. Wang, J.Q. Zheng, H.X. Li, Flux mechanism of compound flux on ash and slag of coal with high ash melting temperature, Chin. J. Chem. Eng. 27(2019) 1200-1206. [85] M.Q. Li, J.J. Fan, Z.X. Zhang, X.J. Wu, Quantum chemistry study of doping kaolin in coal ash, Journal of Combustion Science &Technology 23(2017) 429-435. [86] X. Wu, Z. Zhang, Y. Chen, T. Zhou, J. Fan, G. Piao, N. Kobayashi, S. Mori, Y. Itaya, Main mineral melting behavior and mineral reaction mechanism at molecular level of blended coal ash under gasification condition, Fuel Process. Technol. 91(2010) 1591-1600. [87] L.S.I. Liyanage, S.-G. Kim, J. Houze, S. Kim, M.A. Tschopp, M.I. Baskes, M.F. Horstemeyer, structural, elastic, and thermal properties of cementite FeC 094102. calculated using a modified embedded atom method, Phys. Rev. B 89(2014). [88] H. Feng, J. Zhou, Y. Qian, Atomistic simulations of the solid-liquid transition of 1-ethyl-3-methyl imidazolium bromide ionic liquid, J. Chem. Phys. 135(2011) 144501. [89] J. Li, M.F. Du, Z.X. Zhang, R.Q. Guan, Y.S. Chen, T.Y. Liu, Selection of fluxing agent for coal ash and investigation of fusion mechanism:A first-principle study, Energy Fuel 23(2009) 704-709. [90] M.Q. Li, Z.X. Zhang, X.J. Wu, J.J. Fan, Experiment and mechanism study on the effect of kaolin on melting characteristics of Zhundong coal ash, Energy Fuel 30(2016) 7763-7769. [91] D. Beeman, Some multistep methods for use in molecular dynamics calculations, J. Comput. Phys. 20(1976) 130-139. [92] M. Matsui, Molecular dynamics simulation of structures, bulk moduli, and volume thermal expansivities of silicate liquids in the system CaO-MgO-Al2O3-SiO2, Geophys. Res. Lett. 23(1996) 395-398. [93] B.W.M. Thomas, R.N. Mead, G. Mountjoy, A molecular dynamics study of the atomic structure of (CaO)x(Al2O3)1-x glass with x=0.625 close to the eutectic, J. Phys. Condens. Matter 18(2006) 4697-4708. [94] B. Schatschneider, E.L. Chronister, Molecular dynamics simulations of temperatureand pressure-induced solid-solid phase transitions in crystallinepara-terphenyl, Mol. Simul. 34(2008) 1159-1166. [95] O. Adjaoud, G. Steinle-Neumann, S. Jahn, Mg2SiO4 liquid under high pressure from molecular dynamics, Chem. Geol. 256(2008) 185-192. [96] X. Lu, Y. Hu, Molecular Thermodynamics of Complex Systems, Springer, 2008. [97] G.F. Velardez, S. Alavi, D.L. Thompson, Molecular dynamics studies of melting and solid-state transitions of ammonium nitrate, J. Chem. Phys. 120(2004) 9151-9159. [98] S.N. Luo, A. Strachan, D.C. Swift, Nonequilibrium melting and crystallization of a model Lennard-Jones system, J. Chem. Phys. 120(2004) 11640-11649. [99] J. Solca, A.J. Dyson, G. Steinebrunner, B. Kirchner, H. Huber, Melting curve for argon calculated from pure theory, Chem. Phys. 224(1997) 253-261. [100] J. Solca, A.J. Dyson, G. Steinebrunner, B. Kirchner, H. Huber, Melting curves for neon calculated from pure theory, J. Chem. Phys. 108(1998) 4107-4111. [101] P.M. Agrawal, B.M. Rice, D.L. Thompson, Molecular dynamics study of the effects of voids and pressure in defect-nucleated melting simulations, J. Chem. Phys. 118(2003) 9680. [102] P.M. Agrawal, B.M. Rice, D.L. Thompson, Molecular dynamics study of the melting of nitromethane, J. Chem. Phys. 119(2003) 9617. [103] D.M. Eike, E.J. Maginn, Atomistic simulation of solid-liquid coexistence for molecular systems:Application to triazole and benzene, J. Chem. Phys. 124(2006) 164503. [104] D.J. Evans, G.P. Morriss, Nonlinear-response Theroy for steady planar Couette-flow, Phys. Rev. A 30(1984) 1528-1530. [105] F. Muller-Plathe, Reversing the perturbation in nonequilibrium molecular dynamics:An easy way to calculate the shear viscosity of fluids, Phys. Rev. E 59(1999) 4894-4898. [106] P.J. Daivis, B.D. Todd, A simple, direct derivation and proof of the validity of the SLLOD equations of motion for generalized homogeneous flows, J. Chem. Phys. 124(2006) 194103. [107] M.S. Kelkar, J.L. Rafferty, E.J. Maginn, J.I. Siepmann, Prediction of viscosities and vapor-liquid equilibria for five polyhydric alcohols by molecular simulation, Fluid Phase Equilib. 260(2007) 218-231. [108] L.M. Thompson, J.F. Stebbins, Interaction between composition and temperature effects on non-bridging oxygen and high-coordinated aluminum in calcium aluminosilicate glasses, Am. Mineral. 98(2013) 1980-1987. [109] A.P. Thompson, S.J. Plimpton, W. Mattson, General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions, J. Chem. Phys. 131(2009) 154107. [110] P.J. Daivis, D.J. Evans, Comparison of constant-pressure and constant volume nonequilibrium simulation of sheared model Decane, J. Chem. Phys. 100(1994) 541-547. [111] M. Schoen, C. Hoheisel, The shear viscosity of a lennard-jones fluid calculated by equilibrium molecular dynamics, Mol. Phys. 56(1985) 653-672. [112] M. Cappelezzo, C.A. Capellari, S.H. Pezzin, L.A.F. Coelho, Stokes-Einstein relation for pure simple fluids, J. Chem. Phys. 126(2007) 46. [113] S.V. Lishchuk, Role of three-body interactions in formation of bulk viscosity in liquid argon, J. Chem. Phys. 136(2012) 164501. [114] J.Y. Dai, Y. Hou, D.D. Kang, H.Y. Sun, J.H. Wu, J.M. Yuan, Structure, equation of state, diffusion and viscosity of warm dense Fe under the conditions of a giant planet core, New J. Phys. 15(2013) 045003. [115] M.E. Trybula, Structure and transport properties of the liquid Al80Cu20 alloy-a molecular dynamics study, Comput. Mater. Sci. 122(2016) 341-352. [116] P. Bordat, F. Muller-Plathe, The shear viscosity of molecular fluids:A calculation by reverse nonequilibrium molecular dynamics, J. Chem. Phys. 116(2002) 3362-3369. [117] N. Jakse, M. Bouhadja, J. Kozaily, J.W.E. Drewitt, L. Hennet, D.R. Neuville, H.E. Fischer, V. Cristiglio, A. Pasturel, Interplay between non-bridging oxygen, triclusters, and fivefold Al coordination in low silica content calcium aluminosilicate melts, Appl. Phys. Lett. 101(2012) 201903. [118] K. Li, R. Khanna, M. Bouhadja, J. Zhang, Z. Liu, B. Su, T. Yang, V. Sahajwalla, C.V. Singh, A molecular dynamic simulation on the factors influencing the fluidity of molten coke ash during alkalization with K2O and Na2O, Chem. Eng. J. 313(2017) 1184-1193. [119] K.Z.Z.Z.F.Y.S. Sridhar, Molecular Dynamics Study of the Structural Properties of Calcium Aluminosilicate Slags with Varying Al2O3/SiO2 Ratios, ISIJ International 52(2012) 8. [120] M. Bouhadja, N. Jakse, A. Pasturel, Striking role of non-bridging oxygen on glass transition temperature of calcium aluminosilicate glass-formers, J. Chem. Phys. 140(2014) 234507. [121] L. Zhang, J.A. Van Orman, D.J. Lacks, Molecular dynamics investigation of MgO-CaO-SiO2 liquids:Influence of pressure and composition on density and transport properties, Chem. Geol. 275(2010) 50-57. [122] K. Li, R. Khanna, M. Bouhadja, J. Zhang, Z. Liu, B. Su, T. Yang, V. Sahajwall, C.V. Singh, M. Barati, A molecular dynamic simulation on the factors influencing the fluidity of molten coke ash during alkalization with K2O and Na2O, Chem. Eng. J. 313(2017) 1184-1193. [123] T. Wu, Q. Wang, T. Yao, S. He, Molecular dynamics simulations of the structural properties of Al2O3-based binary systems, J. Non-Cryst. Solids 435(2016) 17-26. [124] T. Wu, Q. Wang, C.F. Yu, S.P. He, Structural and viscosity properties of CaO-SiO2-Al2O3-FeO slags based on molecular dynamic simulation, J. Non-Cryst. Solids 450(2016) 23-31. [125] F.G. Fumi, M.P. Tosi, Ionic sizes born repulsive parameters in NaCl-type alkali halide I.Huggins-Mayer and pauling forms, J. Phys. Chem. Solids 25(1964) 31-42. [126] M.P. Tosi, F.G. Fumi, Ionic sizes born repulsive parameters in NaCl-type alkali halide Ⅱ.Generalized, J. Phys. Chem. Solids 25(1964) 45-52. [127] P.M. Morse, Diatomic molecules according to the wave mechanics I:Electronic levels of the hydrogen molecular ion, Phys. Rev. 33(1929) 0932-0947. [128] K. Zheng, Z. Zheng, F. Yang, S. Sridhar, Molecular dynamics study of the structural properties of calcium aluminosilicate slags with varying Al2O3/SiO2 ratios, ISIJ Int. 52(2012) 342-349. [129] M. Bouhadja, N. Jakse, A. Pasturel, Stokes-Einstein violation and fragility in calcium aluminosilicate glass formers:A molecular dynamics study, Mol. Simul. 40(2014) 251-259. [130] J.M. Delaye, L. Cormier, D. Ghaleb, G. Calas, Investigation of multicomponent silicate glasses by coupling WAXS and molecular dynamics, J. Non-Cryst. Solids 293(2001) 290-296. [131] T. Wu, S.P. He, Y.J. Liang, Q. Wang, Molecular dynamics simulation of the structure and properties for the CaO-SiO2 and CaO-Al2O3 systems, J. Non-Cryst. Solids 411(2015) 145-151. [132]. K. Li, M. Bouhadja, R. Khanna, J. Zhang, Z. Liu, Y. Zhang, T. Yang, V. Sahajwalla, Y. Yang, M. Barati, Influence of SiO2 reduction on the local structural order and fluidity of molten coke ash in the high temperature zone of a blast furnace. A molecular dynamics simulation investigation, Fuel 186(2016) 561-570. |
[1] | Huan-Huan Yin, Yin-Lei Han, Xiao Yan, Yi-Xin Guan. Proanthocyanidins prevent tau protein aggregation and disintegrate tau filaments [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 63-71. |
[2] | Qiaoqiao Liu, Guihong Lin, Jian Zhou, Liangliang Huang, Chang Liu. Hydrogen-bond mediated and concentrate-dependent NaHCO3 crystal morphology in NaHCO3–Na2CO3 aqueous solution: Experiments and computer simulations [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 49-58. |
[3] | Songsong Wang, Hong Li, Changyuan Tao, Renlong Liu, Yundong Wang, Zuohua Liu. Study on cavern evolution and performance of three mixers in agitation of yield-pseudoplastic fluids [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 111-122. |
[4] | Yifeng Chen, Hang Yu, Jingjing Chen, Xiaohua Lu, Xiaoyan Ji. Viscous behavior of 1-hexyl-methylimidazolium bis(trifluoromethylsulfonyl)imide/titanium dioxide/polyethylene glycol [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 280-287. |
[5] | Baodong Zhao, Yinglei Wang, Fulei Gao, Yajing Liu, Weixiao Liu, Feng Ding. Understanding the alkyl effect of geminal dinitropropyl ester energetic plasticizers on hydroxyl terminated polybutadiene (HTPB): Simultaneous tuning on low temperature behavior and processability [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 364-371. |
[6] | Peng Yang, Shengzhe Jia, Yan Wang, Zongqiu Li, Songgu Wu, Jingkang Wang, Junbo Gong. Dissolution behavior, thermodynamic and kinetic analysis of malonamide by experimental measurement and molecular simulation [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 260-269. |
[7] | Yaqi Ren, Shuqian Xia. Synthesis and mechanism analysis of a new oil soluble viscosity reducer for flow improvement of Chenping heavy oil [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 58-67. |
[8] | Anil Kumar Nain. Study of intermolecular interactions in binary mixtures of methyl acrylate with benzene and methyl substituted benzenes at different temperatures: An experimental and theoretical approach [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 212-238. |
[9] | Hojatollah Moradi, Hedayat Azizpour, Hossein Bahmanyar, Mohammad Emamian. Molecular dynamic simulation of carbon dioxide, methane, and nitrogen adsorption on Faujasite zeolite [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 70-76. |
[10] | Tongan Yan, Minman Tong, Qingyuan Yang, Dahuan Liu, Yandong Guo, Chongli Zhong. Large-scale simulations of CO2 diffusion in metal-organic frameworks with open Cu sites [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 1-9. |
[11] | Puxu Liu, Yong Wang, Yang Chen, Xiaoqing Wang, Jiangfeng Yang, Libo Li, Jinping Li. Stable titanium metal-organic framework with strong binding affinity for ethane removal [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 35-41. |
[12] | Tongan Yan, Dahuan Liu, Qingyuan Yang, Chongli Zhong. Screening and design of COF-based mixed-matrix membrane for CH4/N2 separation [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 170-177. |
[13] | Li Ma, Yongjin Cui, Lin Sheng, Chencan Du, Jian Deng, Guangsheng Luo. Determination of interfacial tension and viscosity under dripping flow in a step T-junction microdevice [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 210-218. |
[14] | Jule Ma, Peiwen Xiao, Pingmei Wang, Xue Han, Jianhui Luo, Ruifang Shi, Xuan Wang, Xianyu Song, Shuangliang Zhao. Molecular dynamics simulation study on π-π stacking of Gemini surfactants in oil/water systems [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 335-346. |
[15] | Zhaoyang Yu, Jing Li, Xianren Zhang. A new hypothesis for cavitation nucleation in gas saturated solutions: Clustering of gas molecules lowers significantly the surface tension [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 347-351. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||