[1] M.T. Hoang, T.D. Pham, V.T. Nguyen, M.K. Nguyen, T.T. Pham, B. van der Bruggen, Removal and recovery of lead from wastewater using an integrated system of adsorption and crystallization, J. Clean. Prod. 213(2019) 1204-1216. [2] M. Jaishankar, T. Tseten, N. Anbalagan, B. Mathew, K. Beeregowda, Toxicity, mechanism and health effects of some heavy metals, Interdiscip. Toxicol. 7(2014) 60-72. [3] X. Bian, J. Cui, B. Tang, L. Yang, Chelant-induced phytoextraction of heavy metals from contaminated soils:A review, Pol. J. Environ. Stud. 27(6) (2018) 2417-2424. [4] H. Ali, E. Khan, I. Ilahi, Environmental chemistry and ecotoxicology of hazardous heavy metals:environmental persistence, toxicity, and bioaccumulation, J. Chem. 2019(2019) 6730305. [5] Z. Jia, S. Li, L. Wang, Assessment of soil heavy metals for eco-environment and human health in a rapidly urbanization area of the upper Yangtze Basin, Sci. Rep. 8(1) (2018) 3256. [6] M. Sekar, V. Sakthi, S. Rengaraj, Kinetics and equilibrium adsorption study of lead (II) onto activated carbon prepared from coconut shell, J. Colloid Interface Sci. 279(2) (2004) 307-313. [7] M.S. Islam, M.K. Ahmed, M. Raknuzzaman, M. Habibullah-Al-Mamun, M.K. Islam, Heavy metal pollution in surface water and sediment:a preliminary assessment of an urban river in a developing country, Ecol. Indic. 48(2015) 282-291. [8] A.A. Yakout, R.H. El-Sokkary, M.A. Shreadah, O.G.A. Hamid, Removal of Cd (II) and Pb (II) from wastewater by using triethylenetetramine functionalized grafted cellulose acetate-manganese dioxide composite, Carbohydr. Polym. 148(2016) 406-414. [9] H. Chen, A. Wang, Kinetic and isothermal studies of lead ion adsorption onto palygorskite clay, J. Colloid Interface Sci. 307(2) (2007) 309-316. [10] S. De Gisi, G. Lofrano, M. Grassi, M. Notarnicola, Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment:A Review, Sustain. Mater. Technol. 9(2016) 10-40. [11] A. Samad, M.I. Din, M. Ahmed, Studies on batch adsorptive removal of cadmium and nickel from synthetic waste water using silty clay originated from Balochistan-Pakistan, Chin. J. Chem. Eng. 28(4) (2020) 1171-1176. [12] G. Bakhtiari, M. Bazmi, M. Abdouss, S.J. Royaee, Adsorption and desorption of sulfur compounds by improved nano adsorbent:Optimization using response surface methodology, Bakhtiari Ghasem 36(4) (2017) 69-79. [13] S. Hokkanen, A. Bhatnagar, M. Sillanpää, A review on modification methods to cellulose-based adsorbents to improve adsorption capacity, Water Res. 91(2016) 156-173. [14] M. Barakat, New trends in removing heavy metals from industrial wastewater, Arab. J. Chem. 4(4) (2011) 361-377. [15] B.B. Mathew, M. Jaishankar, V.G. Biju, K.N. Beeregowda, Role of bioadsorbents in reducing toxic metals, J. Toxicol. 2016(2016) 4369604. [16] I. Zawierucha, C. Kozlowski, G. Malina, Immobilized materials for removal of toxic metal ions from surface/groundwaters and aqueous waste streams, Environ. Sci.-Proc. Imp. 18(4) (2016) 429-444. [17] Q. Li, L. Tang, J. Hu, M. Jiang, X. Shi, T. Zhang, Y. Li, X. Pan, Removal of toxic metals from aqueous solution by biochars derived from long-root Eichhornia crassipes, R. Soc. Open Sci. 5(10) (2018) 180966. [18] K. Khulbe, T. Matsuura, Removal of heavy metals and pollutants by membrane adsorption techniques, Appl. Water Sci. 8(1) (2018) 19. [19] S. Babel, T.A. Kurniawan, Low-cost adsorbents for heavy metals uptake from contaminated water:a review, J. Hazard. Mater. 97(1) (2003) 219-243. [20] A.J. Misra, S. Das, A.H. Rahman, B. Das, R. Jayabalan, S.K. Behera, M. Suar, A.J. Tamhankar, A. Mishra, C.S. Lundborg, Doped ZnO nanoparticles impregnated on Kaolinite (Clay):A reusable nanocomposite for photocatalytic disinfection of multidrug resistant Enterobacter sp. under visible light, J. Colloid Interface Sci. 530(2018) 610-623. [21] A. Dhakshinamoorthy, P. Visuvamithiran, V. Tharmaraj, K. Pitchumani, Clay encapsulated ZnO nanoparticles as efficient catalysts for N-benzylation of amines, Catal. Commun. 16(1) (2011) 15-19. [22] L. Vaculikova, E. Plevova, Identification of clay minerals and micas in sedimentary rocks, Acta Geodyn. Geomater. 2(2) (2005) 163. [23] R.M. Alwan, Q.A. Kadhim, K.M. Sahan, R.A. Ali, R.J. Mahdi, N.A. Kassim, A.N. Jassim, Synthesis of zinc oxide nanoparticles via sol-gel route and their characterization, Nanosci. Nanotechnol. 5(1) (2015) 1-6. [24] A. Sarı, M. Tuzen, D. Cıtak, M. Soylak, Adsorption characteristics of Cu (II) and Pb (II) onto expanded perlite from aqueous solution, J. Hazard. Mater. 148(1) (2007) 387-394. [25] B.K. Nandi, A. Goswami, M.K. Purkait, Adsorption characteristics of brilliant green dye on kaolin, J. Hazard. Mater. 161(1) (2009) 387-395. [26] M. Ghaedi, H. Hossainian, M. Montazerozohori, A. Shokrollahi, F. Shojaipour, M. Soylak, M. Purkait, A novel acorn based adsorbent for the removal of brilliant green, Desalination 281(2011) 226-233. [27] H. Karaer, I. Uzun, Adsorption of basic dyestuffs from aqueous solution by _modified chitosan, Desalin. Water Treat. 51(10-12) (2013) 2294-2305. [28] R. Ahmad, R. Kumar, Adsorptive removal of congo red dye from aqueous solution using bael shell carbon, Appl. Surf. Sci. 257(5) (2010) 1628-1633. [29] H. Qi, S. Wang, H. Liu, Y. Gao, T. Wang, Y. Huang, Synthesis of an organic-inorganic polypyrrole/titanium (IV) biphosphate hybrid for Cr (VI) removal, J. Mol. Liq. 215(2016) 402-409. [30] M.T. Amin, A.A. Alazba, M.N. Amin, Absorption behaviours of copper, lead, and arsenic in aqueous solution using date palm fibres and orange peel:Kinetics and thermodynamics, Pol. J. Environ. Stud. 26(3) (2017) 543-557. [31] X.-L. Yu, Y. He, Optimal ranges of variables for an effective adsorption of lead (II) by the agricultural waste pomelo (Citrus grandis) peels using Doehlert designs, Sci. Rep. 8(1) (2018) 729. [32] U.I. Gaya, E. Otene, A.H. Abdullah, Adsorption of aqueous Cd (II) and Pb (II) on activated carbon nanopores prepared by chemical activation of doum palm shell, SpringerPlus 4(1) (2015) 458. [33] B. Volesky, Z. Holan, Biosorption of heavy metals, Biotechnol. Prog. 11(3) (1995) 235-250. [34] H.Y. Yen, C.P. Lin, Adsorption of Cd (II) from wastewater using spent coffee grounds by Taguchi optimization, Desalin. Water Treat. 57(24) (2016) 11154-11161. [35] Y.-S. Ho, Review of second-order models for adsorption systems, J. Hazard. Mater. 136(3) (2006) 681-689. [36] H. Yuh-Shan, Citation review of Lagergren kinetic rate equation on adsorption reactions, Scientometrics 59(1) (2004) 171-177. [37] D. Kumar, J. Gaur, Chemical reaction- and particle diffusion-based kinetic modeling of metal biosorption by a Phormidium sp.-dominated cyanobacterial mat, Bioresour. Technol. 102(2) (2011) 633-640. [38] S. Chowdhury, R. Mishra, P. Saha, P. Kushwaha, Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk, Desalination 265(1) (2011) 159-168. [39] A.P. Vieira, S.A. Santana, C.W. Bezerra, H.A. Silva, J.A. Chaves, J.C. de Melo, E.C. da Silva Filho, C. Airoldi, Kinetics and thermodynamics of textile dye adsorption from aqueous solutions using babassu coconut mesocarp, J. Hazard. Mater. 166(2) (2009) 1272-1278. [40] M.P. Gatabi, H.M. Moghaddam, M. Ghorbani, Efficient removal of cadmium using magnetic multiwalled carbon nanotube nanoadsorbents:Equilibrium, kinetic, and thermodynamic study, J. Nanoparticle Res. 18(7) (2016) 1-17. [41] M.I. Din, K. Ijaz, K. Naseem, Biosorption potentials of acid modified Saccharum bengalense for removal of methyl violet from aqueous solutions, Chem. Ind. Chem. Eng. Q. 23(3) (2017) 399-409. |