[1] J. Zakzeski, A.L. Jongerius, B.M. Weckhuysen, The catalytic valorization of lignin for the production of renewable chemicals, Chem. Rev. 110(2010) 3552-3599. [2] L. Shuai, Y.M. Questell-Santiago, F. Héroguel, Y. Li, H. Kim, R. Meilan, C. Chapple, J. Ralph, J.S. Luterbacher, Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization, Science 354(2310) (2016) 329-333. [3] R. Shu, Y. Xu, L. Ma, Q. Zhang, C. Wang, Y. Chen, Controllable production of guaiacols and phenols from lig nin depolymerization using Pd/C catalyst cooperated with metal chloride, Chem. Eng. J. 338(2018) 457-464. [4] P. Chen, Q. Zhang, R. Shu, Y. Xu, L. Ma, T. Wang, Catalytic depolymerization of the hydrolyzed lignin over mesoporous catalysts, Bior. Tech. 226(2017) 125-131. [5] Q. Song, F. Wang, J. Cai, Y. Wang, J. Zhang, W. Yu, J. Xu, Lignin depolymerization (LDP) in alcohol over nickel-based catalysts via a fragmentation-hydrogenolysis process, Energy Environ. Sci. 6(3) (2013) 994. [6] J. Li, H. Sun, J. Liu, J. Zhang, Z. Li, Y. Fu, Selective reductive cleavage of C-O bond in lignin model compounds over nitrogen-doped carbon-supported iron catalysts, Mole. Catal. 452(2018) 36-45. [7] H. Luo, M.M. Abu-Omar, Lignin extraction and catalytic upgrading from genetically modified poplar, Green Chem. 20(3) (2018) 745-753. [8] B.M. Upton, A.M. Kasko, Strategies for the conversion of lignin to high-value polymeric materials:Review and perspective, Chem. Rev. 116(4) (2016) 2275-2306. [9] H.B. Wu, B. Zhang, H.J. Liang, L.M. Zhai, G.F. Wang, Y. Qin, Distance effect of NiPt dual sites for active hydrogen transfer in tandem reaction, The Innovation 1(2) (2020) 1-7. [10] S. Huang, N. Mahmood, Y. Zhang, M. Tymchyshyn, Reductive depolymerization of kraft lignin with formic acid at low temperatures using inexpensive supported Ni-based catalysts, Fuel 209(2017) 579-586. [11] J. Ji, H. Guo, C. Li, Z. Qi, T. Zhang, Tungsten-based bimetallic catalysts for selective cleavage of lignin C-O bonds, ChemCatChem 10(2) (2018) 415-421. [12] J. He, C. Zhao, J.A. Lercher, Ni-catalyzed cleavage of aryl ethers in the aqueous phase, J. Am. Chem. Soc. 134(51) (2012) 20768-20775. [13] D. Shen, W. Jin, S. Gu, Enhancement of aromatic monomer production from pyrolysis of lignin-related b-O-4 contained model compound, J. Anal. Appl. Pyrol. 127(2017) 176-182. [14] X. Wang, R. Rinaldi, Bifunctional Ni catalysts for the one-pot conversion of Organosolv lignin into cycloalkanes, Catal. Today 269(2016) 48-55. [15] W. Jiang, S. Wu, L.A. Lucia, J. Chu, A comparison of the pyrolysis behavior of selected b-O-4 type lignin model compounds, J. Anal. Appl. Pyrol. 125(2017) 185-192. [16] B. Gomez-Monedero, J. Faria, F. Bimbela, M.P. Ruiz, Catalytic hydroprocessing of lignin b-O-4 ether bond model compound phenethyl phenyl ether over ruthenium catalysts, Biom. Conv. and Biore. 7(3) (2017) 385-398. [17] J. Zhang, G. Lu, C. Cai, Self-hydrogen transfer hydrogenolysis of b-O-4 linkages in lignin catalyzed by MIL-100(Fe) supported Pd-Ni BMNPs, Green Chem. 19(19) (2017) 4538-4543. [18] J. Zhang, J. Teo, X. Chen, H. Asakura, T. Tanaka, A series of NiM (M=Ru, Rh, and Pd) bimetallic catalysts for effective lignin hydrogenolysis in water, ACS Catal. 4(5) (2014) 1574-1583. [19] Y. Xu, L. Zhang, J. Chang, X. Zhang, L. Ma, One step hydrogenation-esterification of model compounds and bio-oil to alcohols and esters over Raney Ni catalysts, Ener. Conv. and Mana. 108(2016) 78-84. [20] D.X. Yang, Q.G. Zhu, B.X. Han, Electroreduction of CO2 in ionic liquid-based electrolytes, The Innovation 1(1) (2020) 1-25. [21] S. Qiu, X. Zhang, Q. Liu, T. Wang, Q. Zhang, L. Ma, A simple method to prepare highly active and dispersed Ni/MCM-41 catalysts by co-impregnation, Catal. Com. 42(2013) 73-78. [22] L.Y. Shi, Y.X. Li, D.M. Xue, P. Tan, Y. Jiang, X.Q. Liu, L.B. Sun, Fabrication of highly dispersed nickel in nanoconfined spaces of as-made SBA-15 for dry reforming of methane with carbon dioxide, Chem. Eng. J. 390(2020) 124491. [23] A. Ungureanu, B. Dragoi, A. Chirieac, C. Ciotonea, S. Royer, Compositiondependent morphostructural properties of Ni-Cu oxide nanoparticles confined within the channels of ordered mesoporous SBA-15 silica, ACS Appl. Mater. Interfaces 5(8) (2013) 3010-3025. [24] Z. Taherian, M. Yousefpour, B. Khoshandam, Catalytic performance of Samariapromoted Ni and Co/SBA-15 catalysts for dry reforming of methane, Intern. J. of Hydro. Ener. 42(39) (2017) 24811-24822. [25] Z. Gao, Y. Qin, Design and properties of confined nanocatalysts by atomic layer deposition, Acc. Chem. Res. 50(9) (2017) 2309-2316. [26] T. Xie, L. Shi, J. Zhang, D. Zhang, Immobilizing Ni nanoparticles to mesoporous silica with size and location control via a polyol-assisted route for coking- and sintering-resistant dry reforming of methane, Chem. Commun. 50(55) (2014) 7250-7253. [27] A. Rodriguez-Gomez, R. Pereniguez, A. Caballero, Nickel particles selectively confined in the mesoporous channels of SBA-15 yielding a very stable catalyst for DRM reaction, J. Phys. Chem. B 122(2) (2018) 500-510. [28] M.B. Yue, L.B. Sun, Y. Cao, Y. Wang, Efficient CO2 capturer derived from assynthesized MCM-41 modified with amine, Chem.-A Euro. J. 14(11) (2008) 3442-3451. [29] C. Cheng, J. Truong, J.A. Barrett, D. Shen, Hydrogenolysis of organosolv lignin in ethanol/isopropanol media without added transition-metal catalyst, ACS Sus. Chem. & Engi. 8(2) (2019) 1023-1030. [30] K. Barta, P.C. Ford, Catalytic conversion of nonfood woody biomass solids to organic liquids, Acc. Chem. Res. 47(5) (2014) 1503-1512. [31] D. Zhao, J. Feng, B.F. Chmelka, Nonionic triblock and star diblock copolymer and oligomeric, J. Americ. Chem. Soc. 120(1998) 6024-6036. [32] J. Xin, H. Cui, Z. Cheng, Z. Zhou, Bimetallic Ni-Co/SBA-15 catalysts prepared by urea co-precipitation for dry reforming of methane, Appli. Catal. A:Gen. 554(2018) 95-104. [33] X. Li, L. Chen, G. Chen, J. Zhang, J. Liu, The relationship between acidity, dispersion of nickel, and performance of Ni/Al-SBA-15 catalyst on eugenol hydrodeoxygenation, Rene. Ener. 149(2020) 609-616. [34] X. Xu, J. Li, Z. Hao, W. Zhao, Characterization and catalytic performance of Co/SBA-15 supported gold catalysts for CO oxidation, Mater. Res. Bull. 41(2) (2006) 406-413. [35] C.A. Didó, C.D.G. Caneppele, E.V. Benvenutti, Small gold nanoparticles with narrow size distribution achieved in SBA-15 pores by using ionic silsesquioxane instead of thiol group as stabilizer and adhesion agent, Micro. Mesop. Mat. 270(2018) 48-56. [36] P. Zhao, F. Qin, Z. Huang, C. Sun, MOF-derived hollow porous Ni/CeO2 octahedron with high efficiency for N2O decomposition, Chem. Eng. J. 349(2018) 72-81. [37] D. Wierzbicki, R. Baran, R. Dębek, M. Motak, Examination of the influence of La promotion on Ni state in hydrotalcite-derived catalysts under CO2 methanation reaction conditions:Operando X-ray absorption and emission spectroscopy investigation, Appli. Catal. B:Environ. 232(2018) 409-419. [38] C. Lindfors, P. Mäki-Arvela, P. Paturi, D.Y. Murzin, Hydrodeoxygenation of isoeugenol over Ni- and Co-supported catalysts, ACS Sust. Chem. & Eng. 7(17) (2019) 14545-14560. |