[1] J. Cheng, F. Zhou, X. Xuan, J. Liu, J. Zhou, K. Cen, The catalytic effect of the Na and Ca-rich industrial wastes on the thermal ignition of coal combustion, Chin. J. Chem. Eng. 27(2019) 2467-2471. [2] G. Guan, Clean coal technologies in Japan:a review, Chin. J. Chem. Eng. 25(2017) 689-697. [3] P.A. Pichardo, S. Karagöz, T. Tsotsis, R. Ciora, V.I. Manousiouthakis, Technical economic analysis of an intensified Integrated Gasification Combined Cycle (IGCC) power plant featuring a sequence of membrane reactors, J. Membr. Sci. 579(2019) 266-282. [4] Y.-S. Chen, Y.-P. Chyou, S.-C. Li, Hot gas clean-up technology of dust particulates with a moving granular bed filter, Appl. Therm. Eng. 74(2015) 146-155. [5] C. He, X. Feng, K.H. Chu, A. Li, Y. Liu, Industrial-scale fixed-bed coal gasification:modeling, simulation and thermodynamic analysis, Chin. J. Chem. Eng. 22(2014) 522-530. [6] C. Dai, F. Gu, Thermophoresis effects on gas-particle phases flow behaviors in entrained flow coal gasifier using Eulerian model, Chin. J. Chem. Eng. 25(2017) 712-721. [7] V. Krishnamoorthy, S.V. Pisupati, A critical review of mineral matter related issues during gasification of coal in fixed, fluidized, and entrained flow gasifiers, Energies 8(2015) 10430-10463. [8] J. Xu, Y. Yang, Y.-W. Li, Recent development in converting coal to clean fuels in China, Fuel 152(2015) 122-130. [9] X. Qi, G. Song, S. Yang, Z. Yang, Q. Lyu, Exploration of effective bed material for use as slagging/agglomeration preventatives in circulating fluidized bed gasification of high-sodium lignite, Fuel 217(2018) 577-586. [10] F. Li, Z. Li, J. Huang, Y. Fang, Understanding mineral behaviors during anthracite fluidized-bed gasification based on slag characteristics, Appl. Energy 131(2014) 279-287. [11] C. Ma, Overview of Ash-Related Matters during Pressurised Entrained-Flow Gasification, Luleå Tekniska Universitet, Sweden, 2015,http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-166952. [12] I. Ye, C. Ryu, J.H. Koo, Influence of critical viscosity and its temperature on the slag behavior on the wall of an entrained coal gasifier, Appl. Therm. Eng. 87(2015) 175-184. [13] R.W. Bryers, Fireside slagging, fouling, and high-temperature corrosion of heat-transfer surface due to impurities in steam-raising fuels, Prog. Energy Combust. Sci. 22(1996) 29-120. [14] S.A. Lolja, H. Haxhi, R. Dhimitri, S. Drushku, A. Malja, Correlation between ash fusion temperatures and chemical composition in Albanian coal ashes, Fuel 81(2002) 2257-2261. [15] F. Li, H. Xiao, Y. Fang, Correlation between ash flow temperature and its ionic potentials under reducing atmosphere, Appl. Therm. Eng. 110(2017) 1007-1010. [16] J.-H. Kim, G.-B. Kim, C.-H. Jeon, Prediction of correlation between ash fusion temperature of ASTM and Thermo-Mechanical Analysis, Appl. Therm. Eng. 125(2017) 1291-1299. [17] V. Adell, C. Cheeseman, M. Ferraris, M. Salvo, F. Smeacetto, A. Boccaccini, Characterising the sintering behaviour of pulverised fuel ash using heating stage microscopy, Mater. Charact. 58(2007) 980-988. [18] G. Dunnu, J. Maier, G. Scheffknecht, Ash fusibility and compositional data of solid recovered fuels, Fuel 89(2010) 1534-1540. [19] C.H. Pang, B. Hewakandamby, T. Wu, E. Lester, An automated ash fusion test for characterisation of the behaviour of ashes from biomass and coal at elevated temperatures, Fuel 103(2013) 454-466. [20] Z. Ge, L. Kong, J. Bai, H. Zhao, X. Cao, H. Li, Z. Bai, B. Meyer, S. Guhl, P. Li, Effect of CaO/Fe2O3 ratio on slag viscosity behavior under entrained flow gasification conditions, Fuel 258(2019) 116129. [21] S. Wan]g, X. Wei, Z. Zong, Insight into the structural features of organic species in Fushun oil shale via thermal dissolution, Chin. J. Chem. Eng. 26(2018) 2162-2168. [22] J. Han, Y. Sun, W. Guo, S. Deng, C. Hou, L. Qu, Q. Li, Non-isothermal thermogravimetric analysis of pyrolysis kinetics of four oil shales using Sestak-Berggren method, J. Therm. Anal. Calorim. 135(2019) 2287-2296. [23] Y. Meng, L. Tang, Y. Yan, J. Oladejo, P. Jiang, T. Wu, C. Pang, Effects of microwave-enhanced pretreatment on oil shale milling performance, Energy Procedia 158(2019) 1712-1717. [24] X. Jiang, X. Han, Z. Cui, New technology for the comprehensive utilization of Chinese oil shale resources, Energy 32(2007) 772-777. [25] W. Qing, B. Jingru, S. Baizhong, S. Jian, Strategy of Huadian oil shale comprehensive utilization, Oil Shale 22(2005) 305. [26] Y. Lu, Y. Wang, Y. Xu, Y. Li, W. Hao, Y. Zhang, Investigation of ash fusion characteristics and migration of sodium during co-combustion of Zhundong coal and oil shale, Appl. Therm. Eng. 121(2017) 224-233. [27] M. Li, F. Li, Q. Liu, Y. Fang, H. Xiao, Regulation of ash fusibility for high ashfusion-temperature (AFT) coal by industrial sludge addition, Fuel 244(2019) 91-103. [28] Y. Zhang, Q. Ren, H. Deng, Q. Lyu, Ash fusion properties and mineral transformation behavior of gasified semichar at high temperature under oxidizing atmosphere, Energy & Fuels 31(2017) 14228-14236. [29] J. Li, X. Chen, Y. Liu, Q. Xiong, J. Zhao, Y. Fang, Effect of ash composition (Ca, Fe, and Ni) on petroleum coke ash fusibility, Energy & Fuels 31(2017) 6917-6927. [30] J.M. Oladejo, S. Adegbite, C. Pang, H. Liu, E. Lester, T. Wu, In-situ monitoring of the transformation of ash upon heating and the prediction of ash fusion behaviour of coal/biomass blends, Energy 199(2020) 117330. [31] T. Yamashita, P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials, Appl. Surf. Sci. 254(2008) 2441-2449. [32] B. Chehroudi, S. Danczyk, A novel distributed ignition method using singlewall carbon nanotubes (SWCNTs) and a low-power flash light, in:Global Powertrain Congress, World Powertrain Conference & Exposition, 2006, pp. 19-21. [33] G.P. Huffman, F.E. Huggins, G.R. Dunmyre, Investigation of the hightemperature behaviour of coal ash in reducing and oxidizing atmospheres, Fuel 60(1981) 585-597. [34] B.C. Folkedahl, H.H. Schobert, Effects of atmosphere on viscosity of selected bituminous and low-rank coal ash slags, Energy & Fuels 19(2005) 208-215. [35] F. Li, Y. Fang, Modification of ash fusion behavior of lignite by the addition of different biomasses, Energy & Fuels 29(2015) 2979-2986. [36] F. Li, Y. Fang, Ash fusion characteristics of a high aluminum coal and its modification, Energy & Fuels 30(2016) 2925-2931. [37] B. Liu, Q. He, Z. Jiang, R. Xu, B. Hu, Relationship between coal ash composition and ash fusion temperatures, Fuel 105(2013) 293-300. [38] T. Sasi, M. Mighani, E. Örs, R. Tawani, M. Gräbner, Prediction of ash fusion behavior from coal ash composition for entrained-flow gasification, Fuel Process. Technol. 176(2018) 64-75. [39] Q.-A. Xiong, J. Li, S. Guo, G. Li, J. Zhao, Y. Fang, Ash fusion characteristics during co-gasification of biomass and petroleum coke, Bioresour. Technol. 257(2018) 1-6. [40] X. Chen, J. Tang, X. Tian, L. Wang, Influence of biomass addition on Jincheng coal ash fusion temperatures, Fuel 160(2015) 614-620. [41] Z. Liu, J. Li, M. Zhu, Q. Wang, X. Lu, Y. Zhang, Z. Zhang, D. Zhang, Investigation into scavenging of sodium and ash deposition characteristics during cocombustion of Zhundong lignite with an oil shale semi-coke of high aluminosilicate in a circulating fluidized bed, Fuel 257(2019) 116099. [42] P.J. Daley, O. Williams, C. Heng Pang, T. Wu, E. Lester, The impact of ash pellet characteristics and pellet processing parameters on ash fusion behaviour, Fuel 251(2019) 779-788. [43] Q. Zhu, Coal sampling and analysis standards, IEA Clean Coal Centre, London, United Kingdom, 2014. [44] Y. Meng, Y. Yan, P. Jiang, M. Zhang, J. Oladejo, T. Wu, C.H. Pang, Investigation on breakage behaviour of oil shale with high grinding resistance:a comparison between microwave and conventional thermal processing, Chem. Eng. Process. 151(2020) 107909. [45] International Organization for Standardization, Coal-Proximate analysis (ISO Standard No. 17246:2010), 2010, https://www.iso.org/standard/55946.html. [46] International Organization for Standardization, Coal-Ultimate analysis (ISO Standard No. 17247:2013), 2013, https://www.iso.org/obp/ui/#iso:std:iso:17247:ed-2:v1:en. [47] A. Majumder, R. Jain, P. Banerjee, J. Barnwal, Development of a new proximate analysis based correlation to predict calorific value of coal, Fuel 87(2008) 3077-3081. [48] ASTM D1857/D1857M-18, Standard Test Method for Fusibility of Coal and Coke Ash, ASTM International, West Conshohocken, PA, 2018. https://www.astm.org. [49] Z. Ma, X. Tian, H. Liao, Y. Guo, F. Cheng, Improvement of fly ash fusion characteristics by adding metallurgical slag at high temperature for production of continuous fiber, J. Clean. Prod. 171(2018) 464-481. [50] L. Hanxu, N. Yoshihiko, D. Zhongbing, M. Zhang, Application of the FactSage to predict the ash melting behavior in reducing conditions, Chin. J. Chem. Eng. 14(2006) 784-789. [51] M.J. Dirbeba, A. Brink, M. Zevenhoven, N. DeMartini, D. Lindberg, L. Hupa, M. Hupa, Characterization of vinasse for thermochemical conversion-fuel fractionation, release of inorganics, and ash-melting behavior, Energy & Fuels 33(7) (2019) 5840-5848. [52] W.R. Niessen, Combustion and Incineration Processes:Applications in Environmental Engineering, CRC Press, Boca Raton, 2002. [53] M. Seggiani, G. Pannocchia, Prediction of coal ash thermal properties using partial least-squares regression, Ind. Eng. Chem. Res. 42(2003) 4919-4926. [54] G. Özbayoğlu, M.E. Özbayoğlu, A new approach for the prediction of ash fusion temperatures:A case study using Turkish lignites, Fuel 85(2006) 545-552. [55] D. Schwitalla, M. Reinmöller, C. Forman, C. Wolfersdorf, M. Gootz, J. Bai, S. Guhl, M. Neuroth, B. Meyer, Ash and slag properties for co-gasification of sewage sludge and coal:An experimentally validated modeling approach, Fuel Process. Technol. 175(2018) 1-9. [56] P. Teixeira, H. Lopes, I. Gulyurtlu, N. Lapa, P. Abelha, Evaluation of slagging and fouling tendency during biomass co-firing with coal in a fluidized bed, Biomass Bioenergy 39(2012) 192-203. [57] M. Pronobis, Evaluation of the influence of biomass co-combustion on boiler furnace slagging by means of fusibility correlations, Biomass Bioenergy 28(2005) 375-383. [58] K. Xiang-dong, T. Li-li, Z. Wei-min, C. Hui, Q. Feng, Effects of coal composition on performance of entrained-flow coal-water slurry gasifier, J. Zhejiang Univ. (Eng. Sci.) 47(2013) 1685-1689. [59] S. Vargas, F.J. Frandsen, K. Dam-Johansen, Rheological properties of hightemperature melts of coal ashes and other silicates, Prog. Energy Combust. Sci. 27(2001) 237-429. [60] W.-J. Shi, L.-X. Kong, J. Bai, J. Xu, W.-C. Li, Z.-Q. Bai, W. Li, Effect of CaO/Fe2O3 on fusion behaviors of coal ash at high temperatures, Fuel Process. Technol. 181(2018) 18-24. [61] B.O. Mysen, D. Virgo, F.A. Seifert, Redox equilibria of iron in alkaline earth silicate melts:relationships between melt structure, oxygen fugacity, temperature and properties of iron-bearing silicate liquids, Am. Mineral. 69(1984) 834-847. [62] S. Munir, W. Nimmo, B. Gibbs, Potential slagging and fouling problems associated with biomass-coal blends in coal-fired boilers, J. Pakistan Inst. Chem. Eng. 38(1) (2010) 26. [63] P.Y. Hsieh, Sintering and collapse of synthetic coal ash and slag cones as observed through constant heating rate optical dilatometry, Fuel 235(2019) 567-576. [64] P.J. Daley, O. Williams, C.H. Pang, T. Wu, E. Lester, The impact of ash pellet characteristics and pellet processing parameters on ash fusion behaviour, Fuel 251(2019) 779-788. [65] A. Kosminski, D. Ross, J. Agnew, Reactions between sodium and silica during gasification of a low-rank coal, Fuel Process. Technol. 87(2006) 1037-1049. [66] G. Song, W. Song, X. Qi, S. Yang, Sodium transformation characteristic of high sodium coal in circulating fluidized bed at different air equivalence ratios, Appl. Therm. Eng. 130(2018) 1199-1207. [67] M.P. Skhonde, R.H. Matjie, J.R. Bunt, A.C. Strydom, H. Schobert, Sulfur behavior in the sasol-lurgi fixed-bed dry-bottom gasification process, Energy & Fuels 23(2008) 229-235. [68] Q. Zhang, H. Liu, Y. Qian, M. Xu, W. Li, J. Xu, The influence of phosphorus on ash fusion temperature of sludge and coal, Fuel Process. Technol. 110(2013) 218-226. [69] Z. Ma, J. Bai, Z. Bai, L. Kong, Z. Guo, J. Yan, W. Li, Mineral transformation in char and its effect on coal char gasification reactivity at high temperatures, part 2:char gasification, Energy & Fuels 28(2014) 1846-1853. [70] M.F. Llorente, J.C. García, Comparing methods for predicting the sintering of biomass ash in combustion, Fuel 84(2005) 1893-1900. [71] B. Zhang, Z. Shen, D. Han, Q. Liang, J. Xu, H. Liu, Effects of the bubbles in slag on slag flow and heat transfer in the membrane wall entrained-flow gasifier, Appl. Therm. Eng. 112(2017) 1178-1186. [72] F. Valenza, R. Botter, P. Cirillo, F. Barberis, M. di Foggia, D. Sottile, Sintering of waste of superalloy casting investment shells as a fine aggregate for refractory tiles, Ceram. Int. 36(2010) 459-463. [73] W. Feng, Y. Min, K. Haoyong, J. Kuang, L. Ping, J. Zhang, Y. Zhang, Effect of Al2O3/CaO on the melting and mineral transformation of Ningdong coal ash, Chin. J. Chem. Eng. 28(12) (2020) 3110-3116. [74] M. Shen, K. Qiu, L. Zhang, Z. Huang, Z. Wang, J. Liu, Influence of coal blending on ash fusibility in reducing atmosphere, Energies 8(2015) 4735-4754. [75] C. Tang, T. Zhu, L. Wang, L. Deng, D. Che, Y. Liu, Effects of ash parameters and fluxing agent on slag layer behavior in cyclone barrel, Fuel 253(2019) 1140-1148. [76] X. Li, L. Zhi, C. He, L. Kong, J. Bai, S. Guhl, B. Meyer, W. Li, The factors on metallic iron crystallization from slag of direct coal liquefaction residue SiO2-Al2O3-Fe2O3-CaO-MgO-TiO2-Na2O-K2O system in the entrained flow gasification condition, Fuel 246(2019) 417-424. |