Chinese Journal of Chemical Engineering ›› 2021, Vol. 32 ›› Issue (4): 393-407.doi: 10.1016/j.cjche.2020.10.011
• Energy, Resources and Environmental Technology • Previous Articles Next Articles
Yang Meng1, Peng Jiang2, Yuxin Yan1,2, Yuxin Pan1, Xinyun Wu1, Haitao Zhao3, Nusrat Sharmin1, Edward Lester4, Tao Wu1,2,5, Cheng Heng Pang1,2,5
Received:
2020-02-16
Revised:
2020-09-26
Online:
2021-04-28
Published:
2021-06-19
Contact:
Cheng Heng Pang
E-mail:ChengHeng.Pang@nottingham.edu.cn
Supported by:
Yang Meng, Peng Jiang, Yuxin Yan, Yuxin Pan, Xinyun Wu, Haitao Zhao, Nusrat Sharmin, Edward Lester, Tao Wu, Cheng Heng Pang. An advanced ash fusion study on the melting behaviour of coal, oil shale and blends under gasification conditions using picture analysis and graphing method[J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 393-407.
[1] J. Cheng, F. Zhou, X. Xuan, J. Liu, J. Zhou, K. Cen, The catalytic effect of the Na and Ca-rich industrial wastes on the thermal ignition of coal combustion, Chin. J. Chem. Eng. 27(2019) 2467-2471. [2] G. Guan, Clean coal technologies in Japan:a review, Chin. J. Chem. Eng. 25(2017) 689-697. [3] P.A. Pichardo, S. Karagöz, T. Tsotsis, R. Ciora, V.I. Manousiouthakis, Technical economic analysis of an intensified Integrated Gasification Combined Cycle (IGCC) power plant featuring a sequence of membrane reactors, J. Membr. Sci. 579(2019) 266-282. [4] Y.-S. Chen, Y.-P. Chyou, S.-C. Li, Hot gas clean-up technology of dust particulates with a moving granular bed filter, Appl. Therm. Eng. 74(2015) 146-155. [5] C. He, X. Feng, K.H. Chu, A. Li, Y. Liu, Industrial-scale fixed-bed coal gasification:modeling, simulation and thermodynamic analysis, Chin. J. Chem. Eng. 22(2014) 522-530. [6] C. Dai, F. Gu, Thermophoresis effects on gas-particle phases flow behaviors in entrained flow coal gasifier using Eulerian model, Chin. J. Chem. Eng. 25(2017) 712-721. [7] V. Krishnamoorthy, S.V. Pisupati, A critical review of mineral matter related issues during gasification of coal in fixed, fluidized, and entrained flow gasifiers, Energies 8(2015) 10430-10463. [8] J. Xu, Y. Yang, Y.-W. Li, Recent development in converting coal to clean fuels in China, Fuel 152(2015) 122-130. [9] X. Qi, G. Song, S. Yang, Z. Yang, Q. Lyu, Exploration of effective bed material for use as slagging/agglomeration preventatives in circulating fluidized bed gasification of high-sodium lignite, Fuel 217(2018) 577-586. [10] F. Li, Z. Li, J. Huang, Y. Fang, Understanding mineral behaviors during anthracite fluidized-bed gasification based on slag characteristics, Appl. Energy 131(2014) 279-287. [11] C. Ma, Overview of Ash-Related Matters during Pressurised Entrained-Flow Gasification, Luleå Tekniska Universitet, Sweden, 2015,http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-166952. [12] I. Ye, C. Ryu, J.H. Koo, Influence of critical viscosity and its temperature on the slag behavior on the wall of an entrained coal gasifier, Appl. Therm. Eng. 87(2015) 175-184. [13] R.W. Bryers, Fireside slagging, fouling, and high-temperature corrosion of heat-transfer surface due to impurities in steam-raising fuels, Prog. Energy Combust. Sci. 22(1996) 29-120. [14] S.A. Lolja, H. Haxhi, R. Dhimitri, S. Drushku, A. Malja, Correlation between ash fusion temperatures and chemical composition in Albanian coal ashes, Fuel 81(2002) 2257-2261. [15] F. Li, H. Xiao, Y. Fang, Correlation between ash flow temperature and its ionic potentials under reducing atmosphere, Appl. Therm. Eng. 110(2017) 1007-1010. [16] J.-H. Kim, G.-B. Kim, C.-H. Jeon, Prediction of correlation between ash fusion temperature of ASTM and Thermo-Mechanical Analysis, Appl. Therm. Eng. 125(2017) 1291-1299. [17] V. Adell, C. Cheeseman, M. Ferraris, M. Salvo, F. Smeacetto, A. Boccaccini, Characterising the sintering behaviour of pulverised fuel ash using heating stage microscopy, Mater. Charact. 58(2007) 980-988. [18] G. Dunnu, J. Maier, G. Scheffknecht, Ash fusibility and compositional data of solid recovered fuels, Fuel 89(2010) 1534-1540. [19] C.H. Pang, B. Hewakandamby, T. Wu, E. Lester, An automated ash fusion test for characterisation of the behaviour of ashes from biomass and coal at elevated temperatures, Fuel 103(2013) 454-466. [20] Z. Ge, L. Kong, J. Bai, H. Zhao, X. Cao, H. Li, Z. Bai, B. Meyer, S. Guhl, P. Li, Effect of CaO/Fe2O3 ratio on slag viscosity behavior under entrained flow gasification conditions, Fuel 258(2019) 116129. [21] S. Wan]g, X. Wei, Z. Zong, Insight into the structural features of organic species in Fushun oil shale via thermal dissolution, Chin. J. Chem. Eng. 26(2018) 2162-2168. [22] J. Han, Y. Sun, W. Guo, S. Deng, C. Hou, L. Qu, Q. Li, Non-isothermal thermogravimetric analysis of pyrolysis kinetics of four oil shales using Sestak-Berggren method, J. Therm. Anal. Calorim. 135(2019) 2287-2296. [23] Y. Meng, L. Tang, Y. Yan, J. Oladejo, P. Jiang, T. Wu, C. Pang, Effects of microwave-enhanced pretreatment on oil shale milling performance, Energy Procedia 158(2019) 1712-1717. [24] X. Jiang, X. Han, Z. Cui, New technology for the comprehensive utilization of Chinese oil shale resources, Energy 32(2007) 772-777. [25] W. Qing, B. Jingru, S. Baizhong, S. Jian, Strategy of Huadian oil shale comprehensive utilization, Oil Shale 22(2005) 305. [26] Y. Lu, Y. Wang, Y. Xu, Y. Li, W. Hao, Y. Zhang, Investigation of ash fusion characteristics and migration of sodium during co-combustion of Zhundong coal and oil shale, Appl. Therm. Eng. 121(2017) 224-233. [27] M. Li, F. Li, Q. Liu, Y. Fang, H. Xiao, Regulation of ash fusibility for high ashfusion-temperature (AFT) coal by industrial sludge addition, Fuel 244(2019) 91-103. [28] Y. Zhang, Q. Ren, H. Deng, Q. Lyu, Ash fusion properties and mineral transformation behavior of gasified semichar at high temperature under oxidizing atmosphere, Energy & Fuels 31(2017) 14228-14236. [29] J. Li, X. Chen, Y. Liu, Q. Xiong, J. Zhao, Y. Fang, Effect of ash composition (Ca, Fe, and Ni) on petroleum coke ash fusibility, Energy & Fuels 31(2017) 6917-6927. [30] J.M. Oladejo, S. Adegbite, C. Pang, H. Liu, E. Lester, T. Wu, In-situ monitoring of the transformation of ash upon heating and the prediction of ash fusion behaviour of coal/biomass blends, Energy 199(2020) 117330. [31] T. Yamashita, P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials, Appl. Surf. Sci. 254(2008) 2441-2449. [32] B. Chehroudi, S. Danczyk, A novel distributed ignition method using singlewall carbon nanotubes (SWCNTs) and a low-power flash light, in:Global Powertrain Congress, World Powertrain Conference & Exposition, 2006, pp. 19-21. [33] G.P. Huffman, F.E. Huggins, G.R. Dunmyre, Investigation of the hightemperature behaviour of coal ash in reducing and oxidizing atmospheres, Fuel 60(1981) 585-597. [34] B.C. Folkedahl, H.H. Schobert, Effects of atmosphere on viscosity of selected bituminous and low-rank coal ash slags, Energy & Fuels 19(2005) 208-215. [35] F. Li, Y. Fang, Modification of ash fusion behavior of lignite by the addition of different biomasses, Energy & Fuels 29(2015) 2979-2986. [36] F. Li, Y. Fang, Ash fusion characteristics of a high aluminum coal and its modification, Energy & Fuels 30(2016) 2925-2931. [37] B. Liu, Q. He, Z. Jiang, R. Xu, B. Hu, Relationship between coal ash composition and ash fusion temperatures, Fuel 105(2013) 293-300. [38] T. Sasi, M. Mighani, E. Örs, R. Tawani, M. Gräbner, Prediction of ash fusion behavior from coal ash composition for entrained-flow gasification, Fuel Process. Technol. 176(2018) 64-75. [39] Q.-A. Xiong, J. Li, S. Guo, G. Li, J. Zhao, Y. Fang, Ash fusion characteristics during co-gasification of biomass and petroleum coke, Bioresour. Technol. 257(2018) 1-6. [40] X. Chen, J. Tang, X. Tian, L. Wang, Influence of biomass addition on Jincheng coal ash fusion temperatures, Fuel 160(2015) 614-620. [41] Z. Liu, J. Li, M. Zhu, Q. Wang, X. Lu, Y. Zhang, Z. Zhang, D. Zhang, Investigation into scavenging of sodium and ash deposition characteristics during cocombustion of Zhundong lignite with an oil shale semi-coke of high aluminosilicate in a circulating fluidized bed, Fuel 257(2019) 116099. [42] P.J. Daley, O. Williams, C. Heng Pang, T. Wu, E. Lester, The impact of ash pellet characteristics and pellet processing parameters on ash fusion behaviour, Fuel 251(2019) 779-788. [43] Q. Zhu, Coal sampling and analysis standards, IEA Clean Coal Centre, London, United Kingdom, 2014. [44] Y. Meng, Y. Yan, P. Jiang, M. Zhang, J. Oladejo, T. Wu, C.H. Pang, Investigation on breakage behaviour of oil shale with high grinding resistance:a comparison between microwave and conventional thermal processing, Chem. Eng. Process. 151(2020) 107909. [45] International Organization for Standardization, Coal-Proximate analysis (ISO Standard No. 17246:2010), 2010, https://www.iso.org/standard/55946.html. [46] International Organization for Standardization, Coal-Ultimate analysis (ISO Standard No. 17247:2013), 2013, https://www.iso.org/obp/ui/#iso:std:iso:17247:ed-2:v1:en. [47] A. Majumder, R. Jain, P. Banerjee, J. Barnwal, Development of a new proximate analysis based correlation to predict calorific value of coal, Fuel 87(2008) 3077-3081. [48] ASTM D1857/D1857M-18, Standard Test Method for Fusibility of Coal and Coke Ash, ASTM International, West Conshohocken, PA, 2018. https://www.astm.org. [49] Z. Ma, X. Tian, H. Liao, Y. Guo, F. Cheng, Improvement of fly ash fusion characteristics by adding metallurgical slag at high temperature for production of continuous fiber, J. Clean. Prod. 171(2018) 464-481. [50] L. Hanxu, N. Yoshihiko, D. Zhongbing, M. Zhang, Application of the FactSage to predict the ash melting behavior in reducing conditions, Chin. J. Chem. Eng. 14(2006) 784-789. [51] M.J. Dirbeba, A. Brink, M. Zevenhoven, N. DeMartini, D. Lindberg, L. Hupa, M. Hupa, Characterization of vinasse for thermochemical conversion-fuel fractionation, release of inorganics, and ash-melting behavior, Energy & Fuels 33(7) (2019) 5840-5848. [52] W.R. Niessen, Combustion and Incineration Processes:Applications in Environmental Engineering, CRC Press, Boca Raton, 2002. [53] M. Seggiani, G. Pannocchia, Prediction of coal ash thermal properties using partial least-squares regression, Ind. Eng. Chem. Res. 42(2003) 4919-4926. [54] G. Özbayoğlu, M.E. Özbayoğlu, A new approach for the prediction of ash fusion temperatures:A case study using Turkish lignites, Fuel 85(2006) 545-552. [55] D. Schwitalla, M. Reinmöller, C. Forman, C. Wolfersdorf, M. Gootz, J. Bai, S. Guhl, M. Neuroth, B. Meyer, Ash and slag properties for co-gasification of sewage sludge and coal:An experimentally validated modeling approach, Fuel Process. Technol. 175(2018) 1-9. [56] P. Teixeira, H. Lopes, I. Gulyurtlu, N. Lapa, P. Abelha, Evaluation of slagging and fouling tendency during biomass co-firing with coal in a fluidized bed, Biomass Bioenergy 39(2012) 192-203. [57] M. Pronobis, Evaluation of the influence of biomass co-combustion on boiler furnace slagging by means of fusibility correlations, Biomass Bioenergy 28(2005) 375-383. [58] K. Xiang-dong, T. Li-li, Z. Wei-min, C. Hui, Q. Feng, Effects of coal composition on performance of entrained-flow coal-water slurry gasifier, J. Zhejiang Univ. (Eng. Sci.) 47(2013) 1685-1689. [59] S. Vargas, F.J. Frandsen, K. Dam-Johansen, Rheological properties of hightemperature melts of coal ashes and other silicates, Prog. Energy Combust. Sci. 27(2001) 237-429. [60] W.-J. Shi, L.-X. Kong, J. Bai, J. Xu, W.-C. Li, Z.-Q. Bai, W. Li, Effect of CaO/Fe2O3 on fusion behaviors of coal ash at high temperatures, Fuel Process. Technol. 181(2018) 18-24. [61] B.O. Mysen, D. Virgo, F.A. Seifert, Redox equilibria of iron in alkaline earth silicate melts:relationships between melt structure, oxygen fugacity, temperature and properties of iron-bearing silicate liquids, Am. Mineral. 69(1984) 834-847. [62] S. Munir, W. Nimmo, B. Gibbs, Potential slagging and fouling problems associated with biomass-coal blends in coal-fired boilers, J. Pakistan Inst. Chem. Eng. 38(1) (2010) 26. [63] P.Y. Hsieh, Sintering and collapse of synthetic coal ash and slag cones as observed through constant heating rate optical dilatometry, Fuel 235(2019) 567-576. [64] P.J. Daley, O. Williams, C.H. Pang, T. Wu, E. Lester, The impact of ash pellet characteristics and pellet processing parameters on ash fusion behaviour, Fuel 251(2019) 779-788. [65] A. Kosminski, D. Ross, J. Agnew, Reactions between sodium and silica during gasification of a low-rank coal, Fuel Process. Technol. 87(2006) 1037-1049. [66] G. Song, W. Song, X. Qi, S. Yang, Sodium transformation characteristic of high sodium coal in circulating fluidized bed at different air equivalence ratios, Appl. Therm. Eng. 130(2018) 1199-1207. [67] M.P. Skhonde, R.H. Matjie, J.R. Bunt, A.C. Strydom, H. Schobert, Sulfur behavior in the sasol-lurgi fixed-bed dry-bottom gasification process, Energy & Fuels 23(2008) 229-235. [68] Q. Zhang, H. Liu, Y. Qian, M. Xu, W. Li, J. Xu, The influence of phosphorus on ash fusion temperature of sludge and coal, Fuel Process. Technol. 110(2013) 218-226. [69] Z. Ma, J. Bai, Z. Bai, L. Kong, Z. Guo, J. Yan, W. Li, Mineral transformation in char and its effect on coal char gasification reactivity at high temperatures, part 2:char gasification, Energy & Fuels 28(2014) 1846-1853. [70] M.F. Llorente, J.C. García, Comparing methods for predicting the sintering of biomass ash in combustion, Fuel 84(2005) 1893-1900. [71] B. Zhang, Z. Shen, D. Han, Q. Liang, J. Xu, H. Liu, Effects of the bubbles in slag on slag flow and heat transfer in the membrane wall entrained-flow gasifier, Appl. Therm. Eng. 112(2017) 1178-1186. [72] F. Valenza, R. Botter, P. Cirillo, F. Barberis, M. di Foggia, D. Sottile, Sintering of waste of superalloy casting investment shells as a fine aggregate for refractory tiles, Ceram. Int. 36(2010) 459-463. [73] W. Feng, Y. Min, K. Haoyong, J. Kuang, L. Ping, J. Zhang, Y. Zhang, Effect of Al2O3/CaO on the melting and mineral transformation of Ningdong coal ash, Chin. J. Chem. Eng. 28(12) (2020) 3110-3116. [74] M. Shen, K. Qiu, L. Zhang, Z. Huang, Z. Wang, J. Liu, Influence of coal blending on ash fusibility in reducing atmosphere, Energies 8(2015) 4735-4754. [75] C. Tang, T. Zhu, L. Wang, L. Deng, D. Che, Y. Liu, Effects of ash parameters and fluxing agent on slag layer behavior in cyclone barrel, Fuel 253(2019) 1140-1148. [76] X. Li, L. Zhi, C. He, L. Kong, J. Bai, S. Guhl, B. Meyer, W. Li, The factors on metallic iron crystallization from slag of direct coal liquefaction residue SiO2-Al2O3-Fe2O3-CaO-MgO-TiO2-Na2O-K2O system in the entrained flow gasification condition, Fuel 246(2019) 417-424. |
[1] | Teng Wang, Zihong Xia, Caixia Chen. Computational study of bubble coalescence/break-up behaviors and bubble size distribution in a 3-D pressurized bubbling gas-solid fluidized bed of Geldart A particles [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 485-496. |
[2] | Baowen Wang, Zhongyuan Cai, Heyu Li, Yanchen Liang, Tao Jiang, Ning Ding, Haibo Zhao. Reaction characteristics investigation of CeO2-enhanced CaSO4 oxygen carrier with lignite [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 319-328. |
[3] | Xiuli Zhang, Zhengdong Gao, Yongzhuo Liu, Yuanhao Hou, Xiaoqing Sun, Qingjie Guo. Experimental and mechanistic study on chemical looping combustion of caking coal [J]. Chinese Journal of Chemical Engineering, 2021, 37(9): 89-96. |
[4] | Qian Zhang, Lei Li, Lixia Cao, Yanxiang Li, Wangliang Li. Coalescence separation of oil water emulsion on amphiphobic fluorocarbon polymer and silica nanoparticles coated fiber-bed coalescer [J]. Chinese Journal of Chemical Engineering, 2021, 36(8): 29-37. |
[5] | Bo Zhang, Bolun Yang, Wei Guo, Song Wu, Jie Zhang, Zhiqiang Wu. Chemical looping gasification of maceral from low-rank coal: Products distribution and kinetic analysis on vitrinite [J]. Chinese Journal of Chemical Engineering, 2021, 36(8): 233-241. |
[6] | Kechang Xie. Reviews of clean coal conversion technology in China: Situations & challenges [J]. Chinese Journal of Chemical Engineering, 2021, 35(7): 62-69. |
[7] | Yanfeng Shen, Yongfeng Hu, Meijun Wang, Weiren Bao, Liping Chang, Kechang Xie. Speciation and thermal transformation of sulfur forms in high-sulfur coal and its utilization in coal-blending coking process: A review [J]. Chinese Journal of Chemical Engineering, 2021, 35(7): 70-82. |
[8] | Chengxiang Shi, Jisheng Xu, Lun Pan, Xiangwen Zhang, Ji-Jun Zou. Perspective on synthesis of high-energy-density fuels: From petroleum to coal-based pathway [J]. Chinese Journal of Chemical Engineering, 2021, 35(7): 83-91. |
[9] | Xiaodong Liu, Zhengwei Jin, Yunhuan Jing, Panpan Fan, Zhili Qi, Weiren Bao, Jiancheng Wang, Xiaohui Yan, Peng Lv, Lianping Dong. Review of the characteristics and graded utilisation of coal gasification slag [J]. Chinese Journal of Chemical Engineering, 2021, 35(7): 92-106. |
[10] | Tingting Jiao, Huiling Fan, Shoujun Liu, Song Yang, Wenguang Du, Pengzheng Shi, Chao Yang, Yeshuang Wang, Ju Shangguan. A review on nitrogen transformation and conversion during coal pyrolysis and combustion based on quantum chemical calculation and experimental study [J]. Chinese Journal of Chemical Engineering, 2021, 35(7): 107-123. |
[11] | Yonglin Li, He'an Luo, Qiuhong Ai, Kuiyi You, Fei Zhao, Wenlong Xiao. Efficient separation of phenols from coal tar with aqueous solution of amines by liquid-liquid extraction [J]. Chinese Journal of Chemical Engineering, 2021, 35(7): 180-188. |
[12] | Huaizhu Li, Lingxue Kong, Jin Bai, Zongqing Bai, Zhenxing Guo, Wen Li. Modification of ash flow properties of coal rich in calcium and iron by coal gangue addition [J]. Chinese Journal of Chemical Engineering, 2021, 35(7): 239-246. |
[13] | Ming Luo, Lunzheng Zhou, Jianjun Cai, Haiyan Zhang, Chao Wang. Migration of sulfur in in-situ gasification chemical looping combustion of Beisu coal with iron- and copper-based oxygen carriers [J]. Chinese Journal of Chemical Engineering, 2021, 35(7): 247-255. |
[14] | Jingying Xu, Yue Lyu, Jiankun Zhuo, Yishu Xu, Zijian Zhou, Qiang Yao. Formation and emission characteristics of VOCs from a coal-fired power plant [J]. Chinese Journal of Chemical Engineering, 2021, 35(7): 256-264. |
[15] | Yongqi Liu, Qiuxiang Yao, Ming Sun, Xiaoxun Ma. Selective preparation of light aromatic hydrocarbons from catalytic fast pyrolysis vapors of coal tar asphaltene over transition metal ion modified zeolites [J]. Chinese Journal of Chemical Engineering, 2021, 35(7): 275-287. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||