Chinese Journal of Chemical Engineering ›› 2021, Vol. 29 ›› Issue (2): 112-120.DOI: 10.1016/j.cjche.2020.12.012
Previous Articles Next Articles
Chunmeng Xu1,2, Huimin Yu1,2,3
Received:
2020-10-17
Revised:
2020-12-04
Online:
2021-05-15
Published:
2021-02-28
Contact:
Huimin Yu
Supported by:
Chunmeng Xu1,2, Huimin Yu1,2,3
通讯作者:
Huimin Yu
基金资助:
Chunmeng Xu, Huimin Yu. Insights into constructing a stable and efficient microbial consortium[J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 112-120.
Chunmeng Xu, Huimin Yu. Insights into constructing a stable and efficient microbial consortium[J]. 中国化学工程学报, 2021, 29(2): 112-120.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2020.12.012
[1] X. Qian, L. Chen, Y. Sui, C. Chen, W. Zhang, J. Zhou, W. Dong, M. Jiang, F. Xin, K. Ochsenreither, Biotechnological potential and applications of microbial consortia, Biotechnol. Adv. 40 (2020) 107500. [2] T. Chen, Y. Zhou, Y. Lu, H. Zhang, Advances in heterologous biosynthesis of plant and fungal natural products by modular co-culture engineering, Biotechnol. Lett. 41 (1) (2019) 27–34. [3] J.A. Jones, V.R. Vernacchio, S.M. Collins, A.N. Shirke, Y. Xiu, J.A. Englaender, B.F. Cress, C.C. Mccutcheon, R.J. Linhardt, R.A. Gross, M.A.G. Koffas, Complete biosynthesis of anthocyanins using E. coli polycultures, Mbio 8 (3) (2017) e00621–17. [4] A. Tesfaw, F. Assefa, Co-culture: A great promising method in single cell protein production, Biotechnol. Mol. Biol. Rev. 9 (2) (2014) 12–20. [5] R. Wang, S. Zhao, Z. Wang, M.A.G. Koffas, Recent advances in modular coculture engineering for synthesis of natural products, Curr. Opin. Biotech. 62 (2020) 65–71. [6] N.S. Mccarty, R. Ledesma-Amaro, Synthetic biology tools to engineer microbial communities for biotechnology, Trends Biotechnol. 37 (2) (2019) 181–197. [7] R.L. Shahab, S. Brethauer, M.P. Davey, A.G. Smith, S. Vignolini, J.S. Luterbacher, M.H. Studer, A heterogeneous microbial consortium producing short-chain fatty acids from lignocellulose, Science 369 (2020) 1073. [8] S. Giri, S. Shitut, C. Kost, Harnessing ecological and evolutionary principles to guide the design of microbial production consortia, Curr. Opin. Biotech. 62 (2020) 228–238. [9] Y. Jiang, R. Wu, J. Zhou, A. He, J. Xu, F. Xin, W. Zhang, J. Ma, M. Jiang, W. Dong, Recent advances of biofuels and biochemicals production from sustainable resources using co-cultivation systems, Biotechnol. Biofuels 12 (2019) 155. [10] X. Wang, R. Su, K. Chen, S. Xu, J. Feng, P. Ouyang, Engineering a microbial consortium based whole-cell system for efficient production of glutarate from l-lysine, Front. Microbiol. 10 (2019) 341. [11] P. Xu, M. Marsafari, J. Zha, M. Koffas, Microbial coculture for flavonoid synthesis, Trends Biotechnol. 38 (2020) 686–688. [12] J. Lu, Y. Lv, Y. Jiang, M. Wu, B. Xu, W. Zhang, J. Zhou, W. Dong, F. Xin, M. Jiang, Consolidated bioprocessing of hemicellulose-enriched lignocellulose to succinic acid through a microbial cocultivation system, Acs Sustain. Chem. Eng. 8 (24) (2020) 9035–9045. [13] H. Song, M. Ding, X. Jia, Q. Ma, Y. Yuan, Synthetic microbial consortia: from systematic analysis to construction and applications, Chem. Soc. Rev. 43 (20) (2014) 6954–6981. [14] R. Tsoi, Z. Dai, L. You, Emerging strategies for engineering microbial communities, Biotechnol. Adv. 37 (2019) 107372. [15] J. Hong, D. Im, M. Oh, Investigating E. coli coculture for resveratrol production with C-13 metabolic flux analysis, J. Agr. Food Chem. 68 (11) (2020) 3466–3473. [16] Y. Du, B. Yang, Z. Yi, L. Hu, M. Li, Engineering Saccharomyces cerevisiae coculture platform for the production of flavonoids, J. Agr. Food Chem. 68 (7) (2020) 2146–2154. [17] H. Zhang, B. Pereira, Z. Li, G. Stephanopoulos, Engineering Escherichia coli coculture systems for the production of biochemical products, P. Natl. Acad. Sci. USA 112 (27) (2015) 8266–8271. [18] X. Liu, X. Li, J. Jiang, Z. Liu, B. Qiao, F. Li, J. Cheng, X. Sun, Y. Yuan, J. Qiao, G. Zhao, Convergent engineering of syntrophic Escherichia coli coculture for efficient production of glycosides, Metab. Eng. 47 (2018) 243–253. [19] Z. Li, X. Wang, H. Zhang, Balancing the non-linear rosmarinic acid biosynthetic pathway by modular co-culture engineering, Metab. Eng. 54 (2019) 1–11. [20] A.L. Mccully, B. Lasarre, J.B. Mckinlay, Growth-independent cross-feeding modifies boundaries for coexistence in a bacterial mutualism, Environ. Microbiol. 19 (9) (2017) 3538–3550. [21] B. Lasarre, A.L. Mccully, J.T. Lennon, J.B. Mckinlay, Microbial mutualism dynamics governed by dose-dependent toxicity of cross-fed nutrients, ISME J. 11 (2) (2017) 337–348. [22] S.G. Hays, L.L.W. Yan, P.A. Silver, D.C. Ducat, Synthetic photosynthetic consortia define interactions leading to robustness and photoproduction, J. Biol. Eng 11 (2017) 4. [23] A. Pascual-Garcia, S. Bonhoeffer, T. Bell, Metabolically cohesive microbial consortia and ecosystem functioning, Philos. T. R. Soc. B 375 (2020) 20190245. [24] M. Ibrar, H. Zhang, Construction of a hydrocarbon-degrading consortium and characterization of two new lipopeptides biosurfactants, Sci. Total Environ. 714 (2020) 136400. [25] E. Ancheeva, A. Mandi, S.B. Kiraly, T. Kurtan, R. Hartmann, S.H. Akone, H. Weber, G. Daletos, P. Proksch, Chaetolines A and B, pyrano[3,2-f]isoquinoline alkaloids from cultivation of Chaetomium sp. in the presence of autoclaved Pseudomonas aeruginosa, J. Nat. Prod. 81 (11) (2018) 2392–2398. [26] S.K. Bhatia, R.K. Bhatia, Y. Choi, E. Kan, Y. Kim, Y. Yang, Biotechnological potential of microbial consortia and future perspectives, Crit. Rev. Biotechnol. 38 (8) (2018) 1209–1229. [27] H. Lu, J.C. Villada, P.K.H. Lee, Modular metabolic engineering for biobased chemical production, Trends Biotechnol. 37 (2) (2019) 152–166. [28] Q. Ma, J. Zhou, W. Zhang, X. Meng, J. Sun, Y. Yuan, Integrated proteomic and metabolomic analysis of an artificial microbial community for two-step production of vitamin C, PLoS one 6 (2011) e26108. [29] Y. Zhi, Q. Wu, Y. Xu, Production of surfactin from waste distillers’ grains by coculture fermentation of two Bacillus amyloliquefaciens strains, Bioresource Technol. 235 (2017) 96–103. [30] J.J. Minty, M.E. Singer, S.A. Scholz, C. Bae, J. Ahn, C.E. Foster, J.C. Liao, X.N. Lin, Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass, P. Natl. Acad. Sci. USA 110 (36) (2013) 14592–14597. [31] T. Liu, Y. Yu, T. Chen, W.N. Chen, A synthetic microbial consortium of Shewanella and Bacillus for enhanced generation of bioelectricity, Biotechnol. Bioeng. 114 (3) (2017) 526–532. [32] D. Beri, W.S. York, L.R. Lynd, M.J. Pena, C.D. Herring, Development of a thermophilic coculture for corn fiber conversion to ethanol, Nat. Commun. 11 (2020) 1937. [33] W. Chen, Y. Kong, J. Li, Y. Sun, J. Min, X. Hu, Enhanced biodegradation of crude oil by constructed bacterial consortium comprising salt-tolerant petroleum degraders and biosurfactant producers, Int. Biodeter. Biodegr. 154 (2020) 105047. [34] Q. Ma, Y. Bi, E. Wang, B. Zhai, X. Dong, B. Qiao, M. Ding, Y. Yuan, Integrated proteomic and metabolomic analysis of a reconstructed three-species microbial consortium for one-step fermentation of 2-keto-l-gulonic acid, the precursor of vitamin C, J. Ind. Microbiol. Biot. 46 (1) (2019) 21–31. [35] X. Wang, Z. Li, L. Policarpio, M.A.G. Koffas, H. Zhang, De novo biosynthesis of complex natural product sakuranetin using modular co-culture engineering, Appl. Microbiol. Biot. 104 (11) (2020) 4849–4861. [36] S. Yuan, X. Yi, T.G. Johnston, H.S. Alper, De novo resveratrol production through modular engineering of an Escherichia coli-Saccharomyces cerevisiae co-culture, Microb. Cell Fact. 19 (2020) 143. [37] F. Hamza, A.R. Kumar, S. Zinjarde, Coculture induced improved production of biosurfactant by Staphylococcus lentus sz2: Role in protecting Artemia salina against Vibrio harveyi, Enzyme Microb. Tech. 114 (2018) 33–39. [38] A.R. Alves, A.M. Sequeira, A. Cunha, Increase in bacterial biosurfactant production by co-cultivation with biofilm-forming bacteria, Lett. Appl. Microbiol. 69 (1) (2019) 79–86. [39] G. Goyal, S. Tsai, B. Madan, N.A. Dasilva, W. Chen, Simultaneous cell growth and ethanol production from cellulose by an engineered yeast consortium displaying a functional mini-cellulosome, Microb. Cell Fact. 10 (2011) 89. [40] S. Kim, S. Baek, K. Lee, J. Hahn, Cellulosic ethanol production using a yeast consortium displaying a minicellulosome and beta-glucosidase, Microb. Cell Fact. 12 (2013) 14. [41] I.A. Phulpoto, B. Hu, Y. Wang, F. Ndayisenga, Z. Yu, Effect of natural microbiome and culturable biosurfactants-producing bacterial consortia of freshwater lake on petroleum-hydrocarbon degradation, Sci. Total Environ. 751 (2020) 141720. [42] S. Che, Y. Men, Synthetic microbial consortia for biosynthesis and biodegradation: Promises and challenges, J. Ind. Microbiol. Biot. 46 (9–10SI) (2019) 1343–1358. [43] S. Ghosh, R. Chowdhury, P. Bhattacharya, Mixed consortia in bioprocesses: Role of microbial interactions, Appl. Microbiol. Biot. 100 (10) (2016) 4283–4295. [44] S.R. Lindemann, H.C. Bernstein, H. Song, J.K. Fredrickson, M.W. Fields, W. Shou, D.R. Johnson, A.S. Beliaev, Engineering microbial consortia for controllable outputs, ISME J. 10 (9) (2016) 2077–2084. [45] A. Burmeister, F. Hilgers, A. Langner, C. Westerwalbesloh, Y. Kerkhoff, N. Tenhaef, T. Drepper, D. Kohlheyer, E. von Lieres, S. Noack, A. Gruenberger, A microfluidic co-cultivation platform to investigate microbial interactions at defined microenvironments, Lab Chip 19 (1) (2019) 98–110. [46] S. Gupta, T.D. Ross, M.M. Gomez, J.L. Grant, P.A. Romero, O.S. Venturelli, Investigating the dynamics of microbial consortia in spatially structured environments, Nat. Commun. 11 (2020) 2418. [47] X. Luo, C. Tsao, H. Wu, D.N. Quan, G.F. Payne, G.W. Rubloff, W.E. Bentley, Distal modulation of bacterial cell-cell signalling in a synthetic ecosystem using partitioned microfluidics, Lab Chip 15 (8) (2015) 1842–1851. [48] H. Kim, B.S. Jeon, A. Pandey, B. Sang, New coculture system of Clostridium spp. and Megasphaera hexanoica using submerged hollow-fiber membrane bioreactors for caproic acid production, Bioresource Technol. 270 (2018) 498–503. [49] S. Freilich, R. Zarecki, O. Eilam, E.S. Segal, C.S. Henry, M. Kupiec, U. Gophna, R. Sharan, E. Ruppin, Competitive and cooperative metabolic interactions in bacterial communities, Nat. Commun. 2 (2011) 589. [50] G. D’Souza, S. Shitut, D. Preussger, G. Yousif, S. Waschina, C. Kost, Ecology and evolution of metabolic cross-feeding interactions in bacteria, Nat. Prod. Rep. 35 (5) (2018) 455–488. [51] P.S. Losoi, V.P. Santala, S.M. Santala, Enhanced population control in a synthetic bacterial consortium by interconnected carbon cross-feeding, ACS Synth. Biol. 8 (12) (2019) 2642–2650. [52] M. Ziesack, T. Gibson, J.K.W. Oliver, A.M. Shumaker, B.B. Hsu, D.T. Riglar, T.W. Giessen, N.V. Dibenedetto, L. Bry, J.C. Way, P.A. Silver, G.K. Gerber, Engineered interspecies amino acid cross-feeding increases population evenness in a synthetic bacterial consortium, Msystems 4 (2019) e00352–19. [53] Z. Sun, T. Koffel, S.M. Stump, G.M. Grimaud, C.A. Klausmeier, Microbial crossfeeding promotes multiple stable states and species coexistence, but also susceptibility to cheaters, J. Theor. Biol. 465 (2019) 63–77. [54] S.P. Hammarlund, J.M. Chacon, W.R. Harcombe, A shared limiting resource leads to competitive exclusion in a cross-feeding system, Environ. Microbiol. 21 (2) (2019) 759–771. [55] N.W. Smith, P.R. Shorten, E. Altermann, N.C. Roy, W.C. Mcnabb, The classification and evolution of bacterial cross-feeding, Front. Ecol. Evol. 7 (2019) 153. [56] G.W. Roell, J. Zha, R.R. Carr, M.A. Koffas, S.S. Fong, Y.J. Tang, Engineering microbial consortia by division of labor, Microb. Cell Fact. 18 (2019) 35. [57] S. Shitut, T. Ahsendorf, S. Pande, M. Egbert, C. Kost, Nanotube-mediated crossfeeding couples the metabolism of interacting bacterial cells, Environ. Microbiol. 21 (4) (2019) 1306–1320. [58] M.T. Mee, J.J. Collins, G.M. Church, H.H. Wang, Syntrophic exchange in synthetic microbial communities, P. Natl. Acad. Sci. USA 111 (20) (2014) E2149–E2156. [59] Y. Liu, M. Ding, W. Ling, Y. Yang, X. Zhou, B. Li, T. Chen, Y. Nie, M. Wang, B. Zeng, X. Li, H. Liu, B. Sun, H. Xu, J. Zhang, Y. Jiao, Y. Hou, H. Yang, S. Xiao, Q. Lin, X. He, W. Liao, Z. Jin, Y. Xie, B. Zhang, T. Li, X. Lu, J. Li, F. Zhang, X. Wu, H. Song, Y. Yuan, A three-species microbial consortium for power generation, Energ. Environ. Sci. 10 (7) (2017) 1600–1609. [60] S. Vet, S. de Buyl, K. Faust, J. Danckaert, D. Gonze, L. Gelens, Bistability in a system of two species interacting through mutualism as well as competition: Chemostat vs. Lotka-volterra equations, Plos One 13 (2018) e0197462. [61] S.M. Stump, E.C. Johnson, C.A. Klausmeier, Local interactions and selforganized spatial patterns stabilize microbial cross-feeding against cheaters, J. R. Soc. Interface 15 (2018) 20170822. [62] A.J. Waite, W. Shou, Adaptation to a new environment allows cooperators to purge cheaters stochastically, P. Natl. Acad. Sci. USA 109 (47) (2012) 19079–19086. [63] M. Thommes, T. Wang, Q. Zhao, I.C. Paschalidis, D. Segre, Designing metabolic division of labor in microbial communities, Msystems 4 (2019) e00263–18. [64] K. Stephens, W.E. Bentley, Synthetic biology for manipulating quorum sensing in microbial consortia, Trends Microbiol. 28 (8) (2020) 633–643. [65] K.H. Nealson, J.W. Hastings, Bacterial bioluminescence - Its control and ecological significance, Microbial. Rev. 43 (4) (1979) 496–518. [66] G.J. Lyon, R.P. Novick, Peptide signaling in Staphylococcus aureus and other gram-positive bacteria, Peptides 25 (9) (2004) 1389–1403. [67] C. Ge, H. Sheng, X. Chen, X. Shen, X. Sun, Y. Yan, J. Wang, Q. Yuan, Quorum sensing system used as a tool in metabolic engineering, Biotechnol. J. 15 (2020) 1900360. [68] A. Vendeville, K. Winzer, K. Heurlier, C.M. Tang, K.R. Hardie, Making ’sense’ of metabolism: autoinducer-2, luxs and pathogenic bacteria, Nat. Rev. Microbiol. 3 (5) (2005) 383–396. [69] S. Wu, J. Liu, C. Liu, A. Yang, J. Qiao, Quorum sensing for population-level control of bacteria and potential therapeutic applications, Cell. Mol. Life Sci. 77 (7) (2020) 1319–1343. [70] K. Stephens, M. Pozo, C. Tsao, P. Hauk, W.E. Bentley, Bacterial co-culture with cell signaling translator and growth controller modules for autonomously regulated culture composition, Nat. Commun. 10 (2019) 4129. [71] F.K. Balagadde, H. Song, J. Ozaki, C.H. Collins, M. Barnet, F.H. Arnold, S.R. Quake, L. You, A synthetic Escherichia coli predator-prey ecosystem, Mol. Syst. Biol. 4 (2008) 187. [72] H. Honjo, K. Iwasaki, Y. Soma, K. Tsuruno, H. Hamada, T. Hanai, Synthetic microbial consortium with specific roles designated by genetic circuits for cooperative chemical production, Metab. Eng. 55 (2019) 268–275. [73] N. Marchand, C.H. Collins, Synthetic quorum sensing and cell-cell communication in gram-positive Bacillus megaterium, ACS Synth. Biol. 5 (7) (2016) 597–606. [74] B.P. Teague, R. Weiss, Synthetic communities, the sum of parts, Science 349 (6251) (2015) 924–925. [75] P.K. Grant, N. Dalchau, J.R. Brown, F. Federici, T.J. Rudge, B. Yordanov, O. Patange, A. Phillips, J. Haseloff, Orthogonal intercellular signaling for programmed spatial behavior, Mol. Syst. Biol. 12 (2016) 849. [76] S.R. Scott, J. Hasty, Quorum sensing communication modules for microbial consortia, ACS Synth. Biol. 5 (9) (2016) 969–977. [77] P. Du, H. Zhao, H. Zhang, R. Wang, J. Huang, Y. Tian, X. Luo, X. Luo, M. Wang, Y. Xiang, L. Qian, Y. Chen, Y. Tao, C. Lou, De novo design of an intercellular signaling toolbox for multi-channel cell-cell communication and biological computation, Nat. Commun. 11 (2020) 4226. [78] S. Widder, R.J. Allen, T. Pfeiffer, T.P. Curtis, C. Wiuf, W.T. Sloan, O.X. Cordero, S. P. Brown, B. Momeni, W. Shou, H. Kettle, H.J. Flint, A.F. Haas, B. Laroche, J. Kreft, P.B. Rainey, S. Freilich, S. Schuster, K. Milferstedt, J.R. van der Meer, T. Grosskopf, J. Huisman, A. Free, C. Picioreanu, C. Quince, I. Klapper, S. Labarthe, B.F. Smets, H. Wang, O.S. Soyer, Challenges in microbial ecology: building predictive understanding of community function and dynamics, ISME J. 10 (11) (2016) 2557–2568. [79] B.D. Karkaria, N.J. Treloar, C.P. Barnes, A.J.H. Fedorec, From microbial communities to distributed computing systems, Front. Bioeng. Biotech. 8 (2020) 834. [80] W. Kong, D.R. Meldgin, J.J. Collins, T. Lu, Designing microbial consortia with defined social interactions, Nat. Chem. Biol. 14 (2018) 821–829. [81] C. Gao, H. Cao, P. Cai, S.J. Sorensen, The initial inoculation ratio regulates bacterial coculture interactions and metabolic capacity, The ISME J. 15 (2021) 29–40. [82] X. Liu, L. Li, J. Liu, J. Qiao, G. Zhao, Metabolic engineering escherichia coli for efficient production of icariside d2, Biotechnol. Biofuels 12 (2019) 261. |
[1] | Chunyu Zhang, Yan Sun, Xiaoyan Dong. Conjugation of a zwitterionic polymer with dimethyl chains to lipase significantly increases the enzyme activity and stability [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 48-53. |
[2] | Fu Yang, Wenhao Li, Rui Ou, Yutong Lu, Xuexue Dong, Wenlong Tu, Wenjian Zhu, Xuyu Wang, Lulu Li, Aihua Yuan, Jianming Pan. Superb VOCs capture engineering carbon adsorbent derived from shaddock peel owning uncompromising thermal-stability and adsorption property [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 120-133. |
[3] | Pan Zhang, Guanghui Chen, Weiwen Wang, Guodong Zhang, Huaming Wang. Analysis of the nutation and precession of the vortex core and the influence of operating parameters in a cyclone separator [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 1-10. |
[4] | Yue Liang, Wenjuan Wang, Yan Sun, Xiaoyan Dong. Insights into the cross-amyloid aggregation of Aβ40 and its N-terminal truncated peptide Aβ11-40 affected by epigallocatechin gallate [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 284-293. |
[5] | Jihe Chen, Zhongan Jiang, Bin Yang, Yapeng Wang, Fabin Zeng. Effect of inlet area on the performance of a two-stage cyclone separator [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 8-19. |
[6] | Anil Kumar Nain. Study of intermolecular interactions in binary mixtures of methyl acrylate with benzene and methyl substituted benzenes at different temperatures: An experimental and theoretical approach [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 212-238. |
[7] | Shiqi Yang, Zhentao Wang, Qian Kong, Bin Li, Junfeng Wang. Visualization on electrified micro-jet instability from Taylor cone in electrohydrodynamic atomization [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 456-465. |
[8] | Saboura Ashkevarian, Jalil Badraghi, Fatemeh Mamashli, Behdad Delavari, Ali Akbar Saboury. Covalent immobilization and characterization of Rhizopus oryzae lipase on core-shell cobalt ferrite nanoparticles for biodiesel production [J]. Chinese Journal of Chemical Engineering, 2021, 37(9): 128-136. |
[9] | Huawei Zhu, Haifeng Yu, Zhaofeng Yang, Hao Jiang, Chunzhong Li. Tungsten and phosphate polyanion co-doping of Ni-ultrahigh cathodes greatly enhancing crystal structure and interface stability [J]. Chinese Journal of Chemical Engineering, 2021, 37(9): 144-151. |
[10] | Junwei Wu, Hongjia Zhou, Jingyi Zhou, Xiao Zhu, Bowen Zhang, Shasha Feng, Zhaoxiang Zhong, Lingxue Kong, Weihong Xing. Meltblown fabric vs nanofiber membrane, which is better for fabricating personal protective equipments [J]. Chinese Journal of Chemical Engineering, 2021, 36(8): 1-9. |
[11] | Chen Xu, Zhenyi Du, Shiqi Yang, Hongda Ma, Jie Feng. Effects of inherent potassium on the catalytic performance of Ni/biochar for steam reforming of toluene as a tar model compound [J]. Chinese Journal of Chemical Engineering, 2021, 35(7): 189-195. |
[12] | Qingpeng Cheng, Yunhao Liu, Shuaishuai Lyu, Ye Tian, Qingxiang Ma, Xingang Li. Manipulating metal-support interactions of metal catalysts for Fischer-Tropsch synthesis [J]. Chinese Journal of Chemical Engineering, 2021, 35(7): 220-230. |
[13] | Di Meng, Cheng Shao, Li Zhu. Dual-radiation-chamber coordinated overall energy efficiency scheduling solution for ethylene cracking process regarding multi-parameter setting and multi-flow allocation [J]. Chinese Journal of Chemical Engineering, 2021, 34(6): 180-197. |
[14] | Shiya He, Zhimin You, Xin Jin, Yi Wu, Cheng Chen, He Zhao, Jian Shen. Continuous generation of lattice oxygen via redox engineering for boosting toluene degradation performances [J]. Chinese Journal of Chemical Engineering, 2021, 34(6): 258-266. |
[15] | Saneliswa Magagula, Jiangze Han, Xinying Liu, Baraka C. Sempuga. Targeting efficient biomass gasification [J]. Chinese Journal of Chemical Engineering, 2021, 33(5): 268-278. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||