Chinese Journal of Chemical Engineering ›› 2021, Vol. 29 ›› Issue (2): 112-120.DOI: 10.1016/j.cjche.2020.12.012
Previous Articles Next Articles
Chunmeng Xu1,2, Huimin Yu1,2,3
Received:
2020-10-17
Revised:
2020-12-04
Online:
2021-05-15
Published:
2021-02-28
Contact:
Huimin Yu
Supported by:
Chunmeng Xu1,2, Huimin Yu1,2,3
通讯作者:
Huimin Yu
基金资助:
Chunmeng Xu, Huimin Yu. Insights into constructing a stable and efficient microbial consortium[J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 112-120.
Chunmeng Xu, Huimin Yu. Insights into constructing a stable and efficient microbial consortium[J]. 中国化学工程学报, 2021, 29(2): 112-120.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2020.12.012
[1] X. Qian, L. Chen, Y. Sui, C. Chen, W. Zhang, J. Zhou, W. Dong, M. Jiang, F. Xin, K. Ochsenreither, Biotechnological potential and applications of microbial consortia, Biotechnol. Adv. 40 (2020) 107500. [2] T. Chen, Y. Zhou, Y. Lu, H. Zhang, Advances in heterologous biosynthesis of plant and fungal natural products by modular co-culture engineering, Biotechnol. Lett. 41 (1) (2019) 27–34. [3] J.A. Jones, V.R. Vernacchio, S.M. Collins, A.N. Shirke, Y. Xiu, J.A. Englaender, B.F. Cress, C.C. Mccutcheon, R.J. Linhardt, R.A. Gross, M.A.G. Koffas, Complete biosynthesis of anthocyanins using E. coli polycultures, Mbio 8 (3) (2017) e00621–17. [4] A. Tesfaw, F. Assefa, Co-culture: A great promising method in single cell protein production, Biotechnol. Mol. Biol. Rev. 9 (2) (2014) 12–20. [5] R. Wang, S. Zhao, Z. Wang, M.A.G. Koffas, Recent advances in modular coculture engineering for synthesis of natural products, Curr. Opin. Biotech. 62 (2020) 65–71. [6] N.S. Mccarty, R. Ledesma-Amaro, Synthetic biology tools to engineer microbial communities for biotechnology, Trends Biotechnol. 37 (2) (2019) 181–197. [7] R.L. Shahab, S. Brethauer, M.P. Davey, A.G. Smith, S. Vignolini, J.S. Luterbacher, M.H. Studer, A heterogeneous microbial consortium producing short-chain fatty acids from lignocellulose, Science 369 (2020) 1073. [8] S. Giri, S. Shitut, C. Kost, Harnessing ecological and evolutionary principles to guide the design of microbial production consortia, Curr. Opin. Biotech. 62 (2020) 228–238. [9] Y. Jiang, R. Wu, J. Zhou, A. He, J. Xu, F. Xin, W. Zhang, J. Ma, M. Jiang, W. Dong, Recent advances of biofuels and biochemicals production from sustainable resources using co-cultivation systems, Biotechnol. Biofuels 12 (2019) 155. [10] X. Wang, R. Su, K. Chen, S. Xu, J. Feng, P. Ouyang, Engineering a microbial consortium based whole-cell system for efficient production of glutarate from l-lysine, Front. Microbiol. 10 (2019) 341. [11] P. Xu, M. Marsafari, J. Zha, M. Koffas, Microbial coculture for flavonoid synthesis, Trends Biotechnol. 38 (2020) 686–688. [12] J. Lu, Y. Lv, Y. Jiang, M. Wu, B. Xu, W. Zhang, J. Zhou, W. Dong, F. Xin, M. Jiang, Consolidated bioprocessing of hemicellulose-enriched lignocellulose to succinic acid through a microbial cocultivation system, Acs Sustain. Chem. Eng. 8 (24) (2020) 9035–9045. [13] H. Song, M. Ding, X. Jia, Q. Ma, Y. Yuan, Synthetic microbial consortia: from systematic analysis to construction and applications, Chem. Soc. Rev. 43 (20) (2014) 6954–6981. [14] R. Tsoi, Z. Dai, L. You, Emerging strategies for engineering microbial communities, Biotechnol. Adv. 37 (2019) 107372. [15] J. Hong, D. Im, M. Oh, Investigating E. coli coculture for resveratrol production with C-13 metabolic flux analysis, J. Agr. Food Chem. 68 (11) (2020) 3466–3473. [16] Y. Du, B. Yang, Z. Yi, L. Hu, M. Li, Engineering Saccharomyces cerevisiae coculture platform for the production of flavonoids, J. Agr. Food Chem. 68 (7) (2020) 2146–2154. [17] H. Zhang, B. Pereira, Z. Li, G. Stephanopoulos, Engineering Escherichia coli coculture systems for the production of biochemical products, P. Natl. Acad. Sci. USA 112 (27) (2015) 8266–8271. [18] X. Liu, X. Li, J. Jiang, Z. Liu, B. Qiao, F. Li, J. Cheng, X. Sun, Y. Yuan, J. Qiao, G. Zhao, Convergent engineering of syntrophic Escherichia coli coculture for efficient production of glycosides, Metab. Eng. 47 (2018) 243–253. [19] Z. Li, X. Wang, H. Zhang, Balancing the non-linear rosmarinic acid biosynthetic pathway by modular co-culture engineering, Metab. Eng. 54 (2019) 1–11. [20] A.L. Mccully, B. Lasarre, J.B. Mckinlay, Growth-independent cross-feeding modifies boundaries for coexistence in a bacterial mutualism, Environ. Microbiol. 19 (9) (2017) 3538–3550. [21] B. Lasarre, A.L. Mccully, J.T. Lennon, J.B. Mckinlay, Microbial mutualism dynamics governed by dose-dependent toxicity of cross-fed nutrients, ISME J. 11 (2) (2017) 337–348. [22] S.G. Hays, L.L.W. Yan, P.A. Silver, D.C. Ducat, Synthetic photosynthetic consortia define interactions leading to robustness and photoproduction, J. Biol. Eng 11 (2017) 4. [23] A. Pascual-Garcia, S. Bonhoeffer, T. Bell, Metabolically cohesive microbial consortia and ecosystem functioning, Philos. T. R. Soc. B 375 (2020) 20190245. [24] M. Ibrar, H. Zhang, Construction of a hydrocarbon-degrading consortium and characterization of two new lipopeptides biosurfactants, Sci. Total Environ. 714 (2020) 136400. [25] E. Ancheeva, A. Mandi, S.B. Kiraly, T. Kurtan, R. Hartmann, S.H. Akone, H. Weber, G. Daletos, P. Proksch, Chaetolines A and B, pyrano[3,2-f]isoquinoline alkaloids from cultivation of Chaetomium sp. in the presence of autoclaved Pseudomonas aeruginosa, J. Nat. Prod. 81 (11) (2018) 2392–2398. [26] S.K. Bhatia, R.K. Bhatia, Y. Choi, E. Kan, Y. Kim, Y. Yang, Biotechnological potential of microbial consortia and future perspectives, Crit. Rev. Biotechnol. 38 (8) (2018) 1209–1229. [27] H. Lu, J.C. Villada, P.K.H. Lee, Modular metabolic engineering for biobased chemical production, Trends Biotechnol. 37 (2) (2019) 152–166. [28] Q. Ma, J. Zhou, W. Zhang, X. Meng, J. Sun, Y. Yuan, Integrated proteomic and metabolomic analysis of an artificial microbial community for two-step production of vitamin C, PLoS one 6 (2011) e26108. [29] Y. Zhi, Q. Wu, Y. Xu, Production of surfactin from waste distillers’ grains by coculture fermentation of two Bacillus amyloliquefaciens strains, Bioresource Technol. 235 (2017) 96–103. [30] J.J. Minty, M.E. Singer, S.A. Scholz, C. Bae, J. Ahn, C.E. Foster, J.C. Liao, X.N. Lin, Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass, P. Natl. Acad. Sci. USA 110 (36) (2013) 14592–14597. [31] T. Liu, Y. Yu, T. Chen, W.N. Chen, A synthetic microbial consortium of Shewanella and Bacillus for enhanced generation of bioelectricity, Biotechnol. Bioeng. 114 (3) (2017) 526–532. [32] D. Beri, W.S. York, L.R. Lynd, M.J. Pena, C.D. Herring, Development of a thermophilic coculture for corn fiber conversion to ethanol, Nat. Commun. 11 (2020) 1937. [33] W. Chen, Y. Kong, J. Li, Y. Sun, J. Min, X. Hu, Enhanced biodegradation of crude oil by constructed bacterial consortium comprising salt-tolerant petroleum degraders and biosurfactant producers, Int. Biodeter. Biodegr. 154 (2020) 105047. [34] Q. Ma, Y. Bi, E. Wang, B. Zhai, X. Dong, B. Qiao, M. Ding, Y. Yuan, Integrated proteomic and metabolomic analysis of a reconstructed three-species microbial consortium for one-step fermentation of 2-keto-l-gulonic acid, the precursor of vitamin C, J. Ind. Microbiol. Biot. 46 (1) (2019) 21–31. [35] X. Wang, Z. Li, L. Policarpio, M.A.G. Koffas, H. Zhang, De novo biosynthesis of complex natural product sakuranetin using modular co-culture engineering, Appl. Microbiol. Biot. 104 (11) (2020) 4849–4861. [36] S. Yuan, X. Yi, T.G. Johnston, H.S. Alper, De novo resveratrol production through modular engineering of an Escherichia coli-Saccharomyces cerevisiae co-culture, Microb. Cell Fact. 19 (2020) 143. [37] F. Hamza, A.R. Kumar, S. Zinjarde, Coculture induced improved production of biosurfactant by Staphylococcus lentus sz2: Role in protecting Artemia salina against Vibrio harveyi, Enzyme Microb. Tech. 114 (2018) 33–39. [38] A.R. Alves, A.M. Sequeira, A. Cunha, Increase in bacterial biosurfactant production by co-cultivation with biofilm-forming bacteria, Lett. Appl. Microbiol. 69 (1) (2019) 79–86. [39] G. Goyal, S. Tsai, B. Madan, N.A. Dasilva, W. Chen, Simultaneous cell growth and ethanol production from cellulose by an engineered yeast consortium displaying a functional mini-cellulosome, Microb. Cell Fact. 10 (2011) 89. [40] S. Kim, S. Baek, K. Lee, J. Hahn, Cellulosic ethanol production using a yeast consortium displaying a minicellulosome and beta-glucosidase, Microb. Cell Fact. 12 (2013) 14. [41] I.A. Phulpoto, B. Hu, Y. Wang, F. Ndayisenga, Z. Yu, Effect of natural microbiome and culturable biosurfactants-producing bacterial consortia of freshwater lake on petroleum-hydrocarbon degradation, Sci. Total Environ. 751 (2020) 141720. [42] S. Che, Y. Men, Synthetic microbial consortia for biosynthesis and biodegradation: Promises and challenges, J. Ind. Microbiol. Biot. 46 (9–10SI) (2019) 1343–1358. [43] S. Ghosh, R. Chowdhury, P. Bhattacharya, Mixed consortia in bioprocesses: Role of microbial interactions, Appl. Microbiol. Biot. 100 (10) (2016) 4283–4295. [44] S.R. Lindemann, H.C. Bernstein, H. Song, J.K. Fredrickson, M.W. Fields, W. Shou, D.R. Johnson, A.S. Beliaev, Engineering microbial consortia for controllable outputs, ISME J. 10 (9) (2016) 2077–2084. [45] A. Burmeister, F. Hilgers, A. Langner, C. Westerwalbesloh, Y. Kerkhoff, N. Tenhaef, T. Drepper, D. Kohlheyer, E. von Lieres, S. Noack, A. Gruenberger, A microfluidic co-cultivation platform to investigate microbial interactions at defined microenvironments, Lab Chip 19 (1) (2019) 98–110. [46] S. Gupta, T.D. Ross, M.M. Gomez, J.L. Grant, P.A. Romero, O.S. Venturelli, Investigating the dynamics of microbial consortia in spatially structured environments, Nat. Commun. 11 (2020) 2418. [47] X. Luo, C. Tsao, H. Wu, D.N. Quan, G.F. Payne, G.W. Rubloff, W.E. Bentley, Distal modulation of bacterial cell-cell signalling in a synthetic ecosystem using partitioned microfluidics, Lab Chip 15 (8) (2015) 1842–1851. [48] H. Kim, B.S. Jeon, A. Pandey, B. Sang, New coculture system of Clostridium spp. and Megasphaera hexanoica using submerged hollow-fiber membrane bioreactors for caproic acid production, Bioresource Technol. 270 (2018) 498–503. [49] S. Freilich, R. Zarecki, O. Eilam, E.S. Segal, C.S. Henry, M. Kupiec, U. Gophna, R. Sharan, E. Ruppin, Competitive and cooperative metabolic interactions in bacterial communities, Nat. Commun. 2 (2011) 589. [50] G. D’Souza, S. Shitut, D. Preussger, G. Yousif, S. Waschina, C. Kost, Ecology and evolution of metabolic cross-feeding interactions in bacteria, Nat. Prod. Rep. 35 (5) (2018) 455–488. [51] P.S. Losoi, V.P. Santala, S.M. Santala, Enhanced population control in a synthetic bacterial consortium by interconnected carbon cross-feeding, ACS Synth. Biol. 8 (12) (2019) 2642–2650. [52] M. Ziesack, T. Gibson, J.K.W. Oliver, A.M. Shumaker, B.B. Hsu, D.T. Riglar, T.W. Giessen, N.V. Dibenedetto, L. Bry, J.C. Way, P.A. Silver, G.K. Gerber, Engineered interspecies amino acid cross-feeding increases population evenness in a synthetic bacterial consortium, Msystems 4 (2019) e00352–19. [53] Z. Sun, T. Koffel, S.M. Stump, G.M. Grimaud, C.A. Klausmeier, Microbial crossfeeding promotes multiple stable states and species coexistence, but also susceptibility to cheaters, J. Theor. Biol. 465 (2019) 63–77. [54] S.P. Hammarlund, J.M. Chacon, W.R. Harcombe, A shared limiting resource leads to competitive exclusion in a cross-feeding system, Environ. Microbiol. 21 (2) (2019) 759–771. [55] N.W. Smith, P.R. Shorten, E. Altermann, N.C. Roy, W.C. Mcnabb, The classification and evolution of bacterial cross-feeding, Front. Ecol. Evol. 7 (2019) 153. [56] G.W. Roell, J. Zha, R.R. Carr, M.A. Koffas, S.S. Fong, Y.J. Tang, Engineering microbial consortia by division of labor, Microb. Cell Fact. 18 (2019) 35. [57] S. Shitut, T. Ahsendorf, S. Pande, M. Egbert, C. Kost, Nanotube-mediated crossfeeding couples the metabolism of interacting bacterial cells, Environ. Microbiol. 21 (4) (2019) 1306–1320. [58] M.T. Mee, J.J. Collins, G.M. Church, H.H. Wang, Syntrophic exchange in synthetic microbial communities, P. Natl. Acad. Sci. USA 111 (20) (2014) E2149–E2156. [59] Y. Liu, M. Ding, W. Ling, Y. Yang, X. Zhou, B. Li, T. Chen, Y. Nie, M. Wang, B. Zeng, X. Li, H. Liu, B. Sun, H. Xu, J. Zhang, Y. Jiao, Y. Hou, H. Yang, S. Xiao, Q. Lin, X. He, W. Liao, Z. Jin, Y. Xie, B. Zhang, T. Li, X. Lu, J. Li, F. Zhang, X. Wu, H. Song, Y. Yuan, A three-species microbial consortium for power generation, Energ. Environ. Sci. 10 (7) (2017) 1600–1609. [60] S. Vet, S. de Buyl, K. Faust, J. Danckaert, D. Gonze, L. Gelens, Bistability in a system of two species interacting through mutualism as well as competition: Chemostat vs. Lotka-volterra equations, Plos One 13 (2018) e0197462. [61] S.M. Stump, E.C. Johnson, C.A. Klausmeier, Local interactions and selforganized spatial patterns stabilize microbial cross-feeding against cheaters, J. R. Soc. Interface 15 (2018) 20170822. [62] A.J. Waite, W. Shou, Adaptation to a new environment allows cooperators to purge cheaters stochastically, P. Natl. Acad. Sci. USA 109 (47) (2012) 19079–19086. [63] M. Thommes, T. Wang, Q. Zhao, I.C. Paschalidis, D. Segre, Designing metabolic division of labor in microbial communities, Msystems 4 (2019) e00263–18. [64] K. Stephens, W.E. Bentley, Synthetic biology for manipulating quorum sensing in microbial consortia, Trends Microbiol. 28 (8) (2020) 633–643. [65] K.H. Nealson, J.W. Hastings, Bacterial bioluminescence - Its control and ecological significance, Microbial. Rev. 43 (4) (1979) 496–518. [66] G.J. Lyon, R.P. Novick, Peptide signaling in Staphylococcus aureus and other gram-positive bacteria, Peptides 25 (9) (2004) 1389–1403. [67] C. Ge, H. Sheng, X. Chen, X. Shen, X. Sun, Y. Yan, J. Wang, Q. Yuan, Quorum sensing system used as a tool in metabolic engineering, Biotechnol. J. 15 (2020) 1900360. [68] A. Vendeville, K. Winzer, K. Heurlier, C.M. Tang, K.R. Hardie, Making ’sense’ of metabolism: autoinducer-2, luxs and pathogenic bacteria, Nat. Rev. Microbiol. 3 (5) (2005) 383–396. [69] S. Wu, J. Liu, C. Liu, A. Yang, J. Qiao, Quorum sensing for population-level control of bacteria and potential therapeutic applications, Cell. Mol. Life Sci. 77 (7) (2020) 1319–1343. [70] K. Stephens, M. Pozo, C. Tsao, P. Hauk, W.E. Bentley, Bacterial co-culture with cell signaling translator and growth controller modules for autonomously regulated culture composition, Nat. Commun. 10 (2019) 4129. [71] F.K. Balagadde, H. Song, J. Ozaki, C.H. Collins, M. Barnet, F.H. Arnold, S.R. Quake, L. You, A synthetic Escherichia coli predator-prey ecosystem, Mol. Syst. Biol. 4 (2008) 187. [72] H. Honjo, K. Iwasaki, Y. Soma, K. Tsuruno, H. Hamada, T. Hanai, Synthetic microbial consortium with specific roles designated by genetic circuits for cooperative chemical production, Metab. Eng. 55 (2019) 268–275. [73] N. Marchand, C.H. Collins, Synthetic quorum sensing and cell-cell communication in gram-positive Bacillus megaterium, ACS Synth. Biol. 5 (7) (2016) 597–606. [74] B.P. Teague, R. Weiss, Synthetic communities, the sum of parts, Science 349 (6251) (2015) 924–925. [75] P.K. Grant, N. Dalchau, J.R. Brown, F. Federici, T.J. Rudge, B. Yordanov, O. Patange, A. Phillips, J. Haseloff, Orthogonal intercellular signaling for programmed spatial behavior, Mol. Syst. Biol. 12 (2016) 849. [76] S.R. Scott, J. Hasty, Quorum sensing communication modules for microbial consortia, ACS Synth. Biol. 5 (9) (2016) 969–977. [77] P. Du, H. Zhao, H. Zhang, R. Wang, J. Huang, Y. Tian, X. Luo, X. Luo, M. Wang, Y. Xiang, L. Qian, Y. Chen, Y. Tao, C. Lou, De novo design of an intercellular signaling toolbox for multi-channel cell-cell communication and biological computation, Nat. Commun. 11 (2020) 4226. [78] S. Widder, R.J. Allen, T. Pfeiffer, T.P. Curtis, C. Wiuf, W.T. Sloan, O.X. Cordero, S. P. Brown, B. Momeni, W. Shou, H. Kettle, H.J. Flint, A.F. Haas, B. Laroche, J. Kreft, P.B. Rainey, S. Freilich, S. Schuster, K. Milferstedt, J.R. van der Meer, T. Grosskopf, J. Huisman, A. Free, C. Picioreanu, C. Quince, I. Klapper, S. Labarthe, B.F. Smets, H. Wang, O.S. Soyer, Challenges in microbial ecology: building predictive understanding of community function and dynamics, ISME J. 10 (11) (2016) 2557–2568. [79] B.D. Karkaria, N.J. Treloar, C.P. Barnes, A.J.H. Fedorec, From microbial communities to distributed computing systems, Front. Bioeng. Biotech. 8 (2020) 834. [80] W. Kong, D.R. Meldgin, J.J. Collins, T. Lu, Designing microbial consortia with defined social interactions, Nat. Chem. Biol. 14 (2018) 821–829. [81] C. Gao, H. Cao, P. Cai, S.J. Sorensen, The initial inoculation ratio regulates bacterial coculture interactions and metabolic capacity, The ISME J. 15 (2021) 29–40. [82] X. Liu, L. Li, J. Liu, J. Qiao, G. Zhao, Metabolic engineering escherichia coli for efficient production of icariside d2, Biotechnol. Biofuels 12 (2019) 261. |
[1] | Peipei Ai, Huiqing Jin, Jie Li, Xiaodong Wang, Wei Huang. Ultra-stable Cu-based catalyst for dimethyl oxalate hydrogenation to ethylene glycol [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 186-193. |
[2] | Abdelgadir Bashir Banaga, Yan-Bin Li, Zhi-Hao Li, Bao-Chang Sun, Guang-Wen Chu. Experimental investigation of the mixing efficiency via intensity of segregation along axial direction of a rotating bar reactor [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 153-159. |
[3] | Bingxiao Feng, Lining Hao, Chaoting Deng, Jiaqiang Wang, Hongbing Song, Meng Xiao, Tingting Huang, Quanhong Zhu, Hengjun Gai. A highly hydrothermal stable copper-based catalyst for catalytic wet air oxidation of m-cresol in coal chemical wastewater [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 338-348. |
[4] | Xia Xiong, Zuohua Liu, Changyuan Tao, Yundong Wang, Fangqin Cheng, Hong Li. Reduced power consumption in stirred vessel with high solid loading by equipping punched baffles [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 203-214. |
[5] | Tinghao Jia, Yunbo Yu, Qing Liu, Yao Yang, Ji-Jun Zou, Xiangwen Zhang, Lun Pan. Theoretical and experimental study on the inhibition of jet fuel oxidation by diarylamine [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 225-232. |
[6] | Shuangfei Zhao, Yingying Nie, Wenyan Zhang, Runze Hu, Lianzhu Sheng, Wei He, Ning Zhu, Yuguang Li, Dong Ji, Kai Guo. Microfluidic field strategy for enhancement and scale up of liquid–liquid homogeneous chemical processes by optimization of 3D spiral baffle structure [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 255-265. |
[7] | Zida Ma, Yuxia Li, Mengmeng Jin, Xiaoqin Liu, Linbing Sun. Fabrication of adsorbents with enhanced CuI stability: Creating a superhydrophobic microenvironment through grafting octadecylamine [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 41-48. |
[8] | Fufeng Liu, Luying Jiang, Jingcheng Sang, Fuping Lu, Li Li. Molecular basis of cross-interactions between Aβ and Tau protofibrils probed by molecular simulations [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 173-180. |
[9] | Ronghua Zhang, Jingxuan Yang, Shaoxing Han, Xiaogang Hao, Guoqing Guan. Improving advantages and reducing risks in increasing cyclone height via an apex cone to grasp vortex end [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 136-143. |
[10] | Qinggang Xu, Yasen Dai, Qing Zhao, Zhengrun Chen, Peizhe Cui, Zhaoyou Zhu, Yinglong Wang, Jun Gao, Yixin Ma. Economy, environmental assessment and energy conservation for separation of isopropanol/diisopropyl ether/water multi-azeotropes via extractive distillation coupled pervaporation process [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 353-363. |
[11] | Dahai Jiang, Zhidi Min, Jing Leng, Huanqing Niu, Yong Chen, Dong Liu, Chenjie Zhu, Ming Li, Wei Zhuang, Hanjie Ying. Characterization of two halophilic adenylate cyclases from Thermobifida halotolerans and Haloactinopolyspora alba [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 56-62. |
[12] | Xibao Zhang, Zhenghong Luo. Bubble size modeling approach for the simulation of bubble columns [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 194-200. |
[13] | Pascal Habimana, Yanjun Jiang, Jing Gao, Jean Bernard Ndayambaje, Osama M. Darwesh, Jean Pierre Mwizerwa, Xiaobing Zheng, Li Ma. Enhancing laccase stability and activity for dyes decolorization using ZIF-8@MWCNT nanocomposite [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 66-75. |
[14] | Chunyu Zhang, Yan Sun, Xiaoyan Dong. Conjugation of a zwitterionic polymer with dimethyl chains to lipase significantly increases the enzyme activity and stability [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 48-53. |
[15] | Fu Yang, Wenhao Li, Rui Ou, Yutong Lu, Xuexue Dong, Wenlong Tu, Wenjian Zhu, Xuyu Wang, Lulu Li, Aihua Yuan, Jianming Pan. Superb VOCs capture engineering carbon adsorbent derived from shaddock peel owning uncompromising thermal-stability and adsorption property [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 120-133. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||