Chinese Journal of Chemical Engineering ›› 2022, Vol. 41 ›› Issue (1): 457-465.DOI: 10.1016/j.cjche.2021.10.009
• Biotechnology and Bioengineering • Previous Articles Next Articles
Chunxiao Zhao, Baojun Yang, Rui Liao, Maoxin Hong, Shichao Yu, Jun Wang, Guanzhou Qiu
Received:
2021-06-30
Revised:
2021-09-18
Online:
2022-02-25
Published:
2022-01-28
Contact:
Jun Wang,E-mail address:wjwq2000@126.com
Supported by:
Chunxiao Zhao, Baojun Yang, Rui Liao, Maoxin Hong, Shichao Yu, Jun Wang, Guanzhou Qiu
通讯作者:
Jun Wang,E-mail address:wjwq2000@126.com
基金资助:
Chunxiao Zhao, Baojun Yang, Rui Liao, Maoxin Hong, Shichao Yu, Jun Wang, Guanzhou Qiu. Catalytic mechanism of manganese ions and visible light on chalcopyrite bioleaching in the presence of Acidithiobacillus ferrooxidans[J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 457-465.
Chunxiao Zhao, Baojun Yang, Rui Liao, Maoxin Hong, Shichao Yu, Jun Wang, Guanzhou Qiu. Catalytic mechanism of manganese ions and visible light on chalcopyrite bioleaching in the presence of Acidithiobacillus ferrooxidans[J]. 中国化学工程学报, 2022, 41(1): 457-465.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2021.10.009
[1] E.M. Córdoba, J.A. Muñoz, M.L. Blázquez, F. González, A. Ballester, Leaching of chalcopyrite with ferric ion. Part I: General aspects, Hydrometallurgy 93(3–4) (2008) 81–87. [2] Z. Liu, S.B. Yang, Y.S. Bai, J.J. Xiu, H. Yan, J. Huang, L.W. Wang, H.M. Zhang, Y. Liu, The alteration of cell membrane of sulfate reducing bacteria in the presence of Mn(II) and Cd(II), Miner. Eng. 24(8) (2011) 839–844. [3] H.B. Zhao, Y.S. Zhang, X. Zhang, L. Qian, M.L. Sun, Y. Yang, Y.S. Zhang, J. Wang, H. Kim, G.Z. Qiu, The dissolution and passivation mechanism of chalcopyrite in bioleaching: An overview, Miner. Eng. 136(2019) 140–154. [4] W.M. Zeng, Y.P. Peng, T.J. Peng, M.H. Nan, M. Chen, G.Z. Qiu, L. Shen, Electrochemical studies on dissolution and passivation behavior of low temperature bioleaching of chalcopyrite by Acidithiobacillus ferrivorans YL15, Miner. Eng. 155(2020) 106416. [5] G.M. O’Connor, J.J. Eksteen, A critical review of the passivation and semiconductor mechanisms of chalcopyrite leaching, Miner. Eng. 154(2020) 106401. [6] J.L. Xia, H.C. Liu, Z.Y. Nie, X.L. Fan, D.R. Zhang, X.F. Zheng, L.Z. Liu, X. Pan, Y.H. Zhou, Taking insights into phenomics of microbe-mineral interaction in bioleaching and acid mine drainage: Concepts and methodology, Sci. Total. Environ. 729(2020) 139005. [7] A. Chopard, B. Plante, M. Benzaazoua, H. Bouzahzah, P. Marion, Geochemical investigation of the galvanic effects during oxidation of pyrite and base-metals sulfides, Chemosphere 166(2017) 281–291. [8] C.X. Zhao, B.J. Yang, X.X. Wang, H.B. Zhao, M. Gan, G.Z. Qiu, J. Wang, Catalytic effect of visible light and Cd2+ on chalcopyrite bioleaching, Trans. Nonferrous Met. Soc. China 30(4) (2020) 1078–1090. [9] B.J. Yang, C.X. Zhao, W. Luo, R. Liao, M. Gan, J. Wang, X.D. Liu, G.Z. Qiu, Catalytic effect of silver on copper release from chalcopyrite mediated by Acidithiobacillus ferrooxidans, J. Hazard. Mater. 392(2020) 122290. [10] F.K. Crundwell, A. van Aswegen, L.J. Bryson, C. Biley, D. Craig, V.D. Marsicano, J. M. Keartland, The effect of visible light on the dissolution of natural chalcopyrite (CuFeS2) in sulphuric acid solutions, Hydrometallurgy 158(2015) 119–131. [11] A.H. Lu, Y. Li, S. Jin, X. Wang, X.L. Wu, C.P. Zeng, Y. Li, H.R. Ding, R.X. Hao, M. Lv, C.Q. Wang, Y.Q. Tang, H.L. Dong, Growth of non-phototrophic microorganisms using solar energy through mineral photocatalysis, Nat. Commun. 3(2012) 768. [12] F.K.Crundwell,L.J.Bryson,A.vanAswegen,B.D.H.Knights,Effectofchoppedlight on the dissolution and leaching of chalcopyrite, Miner. Eng. 160(2021) 106703. [13] S. Zhou, M. Gan, J.Y. Zhu, Q. Li, S.Q. Jie, B.J. Yang, X.D. Liu, Catalytic effect of light illumination on bioleaching of chalcopyrite, Bioresour. Technol. 182(2015) 345–352. [14] S. Ghosh, S. Mohanty, S. Nayak, L.B. Sukla, A.P. Das, Molecular identification of indigenous manganese solubilising bacterial biodiversity from manganese mining deposits, J. Basic Microbiol. 56(3) (2016) 254–262. [15] A.H. Lu, Y. Li, H.R. Ding, X.M. Xu, Y.Z. Li, G.P. Ren, J. Liang, Y.W. Liu, H. Hong, N. Chen, S.Q. Chu, F.F. Liu, Y. Li, H.R. Wang, C. Ding, C.Q. Wang, Y. Lai, J. Liu, J. Dick, K.H. Liu, M.F. Hochella Jr, Photoelectric conversion on Earth’s surface via widespread Fe- and Mn-mineral coatings, PNAS 116(20) (2019) 9741–9746. [16] N. Sakai, Y. Ebina, K. Takada, T. Sasaki, Photocurrent generation from semiconducting manganese oxide nanosheets in response to visible light, J. Phys. Chem. B 109(19) (2005) 9651–9655. [17] R. Liao, B.J. Yang, X.T. Huang, M.X. Hong, S.C. Yu, S.T. Liu, J. Wang, G.Z. Qiu, Combined effect of silver ion and pyrite on AMD formation generated by chalcopyrite bio-dissolution, Chemosphere 279(2021) 130516. [18] R.Y. Zhang, D.Z. Wei, Y.B. Shen, W.G. Liu, T. Lu, C. Han, Catalytic effect of polyethylene glycol on sulfur oxidation in chalcopyrite bioleaching by Acidithiobacillus ferrooxidans, Miner. Eng. 95(2016) 74–78. [19] H.B. Zhao, J. Wang, X.W. Gan, M.H. Hu, L. Tao, W.Q. Qin, G.Z. Qiu, Role of pyrite in sulfuric acid leaching of chalcopyrite: An elimination of polysulfide by controlling redox potential, Hydrometallurgy 164(2016) 159–165. [20] J.V. Ferrari, P. Z, M.B.D. Almeida, Determination of copper and zinc contents in brass plating solutions by titrimetric analysis: A review, Trans. Inst. Met. Finish. 91(12) (2004) 38–43. [21] J.L. Xia, J.J. Song, H.C. Liu, Z.Y. Nie, L. Shen, P. Yuan, C.Y. Ma, L. Zheng, Y.D. Zhao, Study on catalytic mechanism of silver ions in bioleaching of chalcopyrite by SR-XRD and XANES, Hydrometallurgy 180(2018) 26–35. [22] M.X. Hong, X.T. Huang, X.W. Gan, G.Z. Qiu, J. Wang, The use of pyrite to control redox potential to enhance chalcopyrite bioleaching in the presence of Leptospirillum ferriphilum, Miner. Eng. 172(2021) 107145. [23] R. Guo, A.G. Yan, J.J. Xu, B.T. Xu, T.T. Li, X.W. Liu, T.F. Yi, S.H. Luo, Effects of morphology on the visible-light-driven photocatalytic and bactericidal properties of BiVO4/CdS heterojunctions: A discussion on photocatalysis mechanism, J. Alloy. Compd. 817(2020) 153246. [24] B.J. Yang, M. Lin, J.H. Fang, R.Y. Zhang, W. Luo, X.X. Wang, R. Liao, B.Q. Wu, J. Wang, M. Gan, B. Liu, Y. Zhang, X.D. Liu, W.Q. Qin, G.Z. Qiu, Combined effects of jarosite and visible light on chalcopyrite dissolution mediated by Acidithiobacillus ferrooxidans, Sci. Total Environ. 698(2020) 134175. [25] C. Droguett, R. Salazar, E. Brillas, I. Sirés, C. Carlesi, J.F. Marco, A. Thiam, Treatment of antibiotic cephalexin by heterogeneous electrochemical Fentonbased processes using chalcopyrite as sustainable catalyst, Sci. Total Environ. 740(2020) 140154. [26] C.B. Tabelin, R.D. Corpuz, T. Igarashi, M. Villacorte-Tabelin, R.D. Alorro, K. Yoo, S. Raval, M. Ito, N. Hiroyoshi, Acid mine drainage formation and arsenic mobility under strongly acidic conditions: Importance of soluble phases, iron oxyhydroxides/oxides and nature of oxidation layer on pyrite, J. Hazard. Mater. 399(2020) 122844. [27] Q.Y. Liu, M. Chen, Y. Yang, The effect of chloride ions on the electrochemical dissolution of chalcopyrite in sulfuric acid solutions, Electrochim. Acta 253(2017) 257–267. [28] O.G. Olvera, M. Rebolledo, E. Asselin, Atmospheric ferric sulfate leaching of chalcopyrite: Thermodynamics, kinetics and electrochemistry, Hydrometallurgy 165(2016) 148–158. [29] B.J. Yang, W. Luo, X.X. Wang, S.C. Yu, M. Gan, J. Wang, X.D. Liu, G.Z. Qiu, The use of biochar for controlling acid mine drainage through the inhibition of chalcopyrite biodissolution, Sci. Total Environ. 737(2020) 139485. [30] Y.S. Zhang, H.B. Zhao, L. Qian, M.L. Sun, X. Lv, L.Y. Zhang, J. Petersen, G.Z. Qiu, A brief overview on the dissolution mechanisms of sulfide minerals in acidic sulfate environments at low temperatures: Emphasis on electrochemical cyclic voltammetry analysis, Miner. Eng. 158(2020) 106586. [31] Z.Z. Bian, Y.L. Feng, H.R. Li, Z.W. Du, Removal of chemical oxygen demand (COD) and heavy metals by catalytic ozonation-microbial fuel cell and Acidithiobacillus ferrooxidans leaching in flotation wastewater (FW), Water Sci. Technol. 79(12) (2019) 2328–2336. [32] B.J. Yang, M. Gan, W. Luo, S. Zhou, P. Lei, J. Zeng, W. Sun, J.Y. Zhu, Y.H. Hu, Synergistic catalytic effects of visible light and graphene on bioleaching of chalcopyrite, RSC Adv 7(79) (2017) 49838–49848. [33] C.K. Tanne, A. Schippers, Electrochemical investigation of chalcopyrite (bio) leaching residues, Hydrometallurgy 187(2019) 8–17. [34] H.B. Zhao, X.W. Gan, J. Wang, L. Tao, W.Q. Qin, G.Z. Qiu, Stepwise bioleaching of Cu-Zn mixed ores with comprehensive utilization of silver-bearing solid waste through a new technique process, Hydrometallurgy 171(2017) 374–386. [35] H.B. Zhao, J. Wang, X.W. Gan, M.H. Hu, E.X. Zhang, W.Q. Qin, G.Z. Qiu, Cooperative bioleaching of chalcopyrite and silver-bearing tailing by mixed moderately thermophilic culture: An emphasis on the chalcopyrite dissolution with XPS and electrochemical analysis, Miner. Eng. 81(2015) 29–39. [36] M. Gericke, Y. Govender, A. Pinches, Tank bioleaching of low-grade chalcopyrite concentrates using redox control, Hydrometallurgy 104(3–4) (2010) 414–419. [37] D.L. Bampole, P. Luis, A.F. Mulaba-Bafubiandi, Sustainable copper extraction from mixed chalcopyrite-chalcocite using biomass, Trans. Nonferrous Met. Soc. China 29(10) (2019) 2170–2182. [38] D.X. Makaula, R.J. Huddy, M.A. Fagan-Endres, S.T.L. Harrison, Cross-correlating analyses of mineral-associated microorganisms in an unsaturated packed bed flow-through column test; cell number, activity and EPS, Res. Microbiol. 171(7) (2020) 222–229. [39] S.S. Feng, Y.J. Yin, Z.W. Yin, H.L. Zhang, D.Q. Zhu, Y.J. Tong, H.L. Yang, Simultaneously enhance iron/sulfur metabolism in column bioleaching of chalcocite by pyrite and sulfur oxidizers based on joint utilization of waste resource, Environ. Res. 194(2021) 110702. [40] T.J. Peng, D. Zhou, X.D. Liu, R.L. Yu, T. Jiang, G.H. Gu, M. Chen, G.Z. Qiu, W.M. Zeng, Enrichment of ferric iron on mineral surface during bioleaching of chalcopyrite, Trans. Nonferrous Met. Soc. China 26(2) (2016) 544–550. [41] R.H. Liu, J. Chen, W.B. Zhou, H.N. Cheng, H.B. Zhou, Insight to the early-stage adsorption mechanism of moderately thermophilic consortia and intensified bioleaching of chalcopyrite, Biochem. Eng. J. 144(2019) 40–47. [42] J. Wang, X.W. Gan, H.B. Zhao, M.H. Hu, K.Y. Li, W.Q. Qin, G.Z. Qiu, Dissolution and passivation mechanisms of chalcopyrite during bioleaching: DFT calculation, XPS and electrochemistry analysis, Miner. Eng. 98(2016) 264–278. [43] H. Liu, X.C. Lu, L.J. Zhang, W.L. Xiang, X.Y. Zhu, J. Li, X.L. Wang, J.J. Lu, R.C. Wang, Collaborative effects of Acidithiobacillus ferrooxidans and ferrous ions on the oxidation of chalcopyrite, Chem. Geol. 493(2018) 109–120. [44] H.B. Zhao, J. Wang, W.Q. Qin, M.H. Hu, S. Zhu, G.Z. Qiu, Electrochemical dissolution process of chalcopyrite in the presence of mesophilic microorganisms, Miner. Eng. 71(2015) 159–169. [45] C.R. Yang, F. Jiao, W.Q. Qin, Co-bioleaching of chalcopyrite and silver-bearing bornite in a mixed moderately thermophilic culture, Minerals 8(1) (2017) 4. [46] G. Donnay, L.M. Corliss, J.D.H. Donnay, N. Elliott, J.M. Hastings, Symmetry of magnetic structures: magnetic structure of chalcopyrite, Phys. Rev. 112(6) (1958) 1917. [47] H.B. Zhao, X.T. Huang, J. Wang, Y.N. Li, R. Liao, X.X. Wang, X. Qiu, Y.M. Xiong, W. Q. Qin, G.Z. Qiu, Comparison of bioleaching and dissolution process of p-type and n-type chalcopyrite, Miner. Eng. 109(2017) 153–161. [48] X.Y. Meng, H.B. Zhao, M.L. Sun, Y.S. Zhang, Y.J. Zhang, X. Lv, H. Kim, M. Vainshtein, S. Wang, G.Z. Qiu, The role of cupric ions in the oxidative dissolution process of marmatite: A dependence on Cu2+ concentration, Sci. Total Environ. 675(2019) 213–223. [49] S. Deng, G.H. Gu, An electrochemical impedance spectroscopy study of arsenopyrite oxidation in the presence of Sulfobacillus thermosulfidooxidans, Electrochim. Acta 287(2018) 106–114. [50] J.F. Li, C.Y. Zhong, J.R. Huang, Y.B. Chen, Z. Wang, Z.Q. Liu, Carbon dots decorated three-dimensionally ordered macroporous bismuth-doped titanium dioxide with efficient charge separation for high performance photocatalysis, J. Colloid Interface Sci. 553(2019) 758–767. [51] R.B. Wei, Z.L. Huang, G.H. Gu, Z. Wang, L.X. Zeng, Y.B. Chen, Z.Q. Liu, Dualcocatalysts decorated rimous CdS spheres advancing highly-efficient visiblelight photocatalytic hydrogen production, Appl. Catal. B: Environ. 231(2018) 101–107. [52] S. Deng, G.H. Gu, B.K. Xu, L.J. Li, B.C. Wu, Surface characterization of arsenopyrite during chemical and biological oxidation, Sci. Total Environ. 626(2018) 349–356. |
[1] | Shuo Li, Jianlin Cao, Xiang Feng, Yupeng Du, De Chen, Chaohe Yang, Wenhua Wang, Wanzhong Ren. Insights into the confinement effect on isobutane alkylation with C4 olefin catalyzed by zeolite catalyst: A combined theoretical and experimental study [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 174-184. |
[2] | Zhouxin Chang, Feng Yu, Zhisong Liu, Zijun Wang, Jiangbing Li, Bin Dai, Jinli Zhang. Ni-Al mixed metal oxide with rich oxygen vacancies: CO methanation performance and density functional theory study [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 73-83. |
[3] | Weizhou Jiao, Xingyue Wei, Shengjuan Shao, Youzhi Liu. Catalytic decomposition and mass transfer of aqueous ozone promoted by Fe-Mn-Cu/γ-Al2O3 in a rotating packed bed [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 133-142. |
[4] | Minxia Liu, Dang Wu, Dongling Qin, Gang Yang. Spray-drying assisted layer-structured H2TiO3 ion sieve synthesis and lithium adsorption performance [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 258-267. |
[5] | Baojun Yang, Wen Luo, Maoxin Hong, Jun Wang, Xueduan Liu, Min Gan, Guanzhou Qiu. Inhibition of hematite on acid mine drainage caused by chalcopyrite biodissolution [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 94-104. |
[6] | Feng Guo, Zhihao Chen, Xiliu Huang, Longwen Cao, Xiaofang Cheng, Weilong Shi, Lizhuang Chen. Ternary Ni2P/Bi2MoO6/g-C3N4 composite with Z-scheme electron transfer path for enhanced removal broad-spectrum antibiotics by the synergistic effect of adsorption and photocatalysis [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 157-168. |
[7] | Qi Liu, Gao Cheng, Ming Sun, Weixiong Yu, Xiaohong, Zeng, Shichang Tang, Yongfeng li, Lin Yu. A facile preparation of hausmannite as a high-performance catalyst for toluene combustion [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 392-401. |
[8] | Zhen Lu, Jie He, Bogeng Guo, Yulai Zhao, Jingyu Cai, Longqiang Xiao, Linxi Hou. Efficient homogenous catalysis of CO2 to generate cyclic carbonates by heterogenous and recyclable polypyrazoles [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 110-115. |
[9] | Di Gao, Yibo Zhi, Liyuan Cao, Liang Zhao, Jinsen Gao, Chunming Xu, Mingzhi Ma, Pengfei Hao. Influence of zinc state on the catalyst properties of Zn/HZSM-5 zeolite in 1-hexene aromatization and cyclohexane dehydrogenation [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 124-134. |
[10] | Xin Li, Song Hong, Leiduan Hao, Zhenyu Sun. Cadmium-based metal-organic frameworks for high-performance electrochemical CO2 reduction to CO over wide potential range [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 143-151. |
[11] | Yanliang Zhou, Qianjin Sai, Zhenni Tan, Congying Wang, Xiuyun Wang, Bingyu Lin, Jun Ni, Jianxin Lin, Lilong Jiang. Highly efficient subnanometer Ru-based catalyst for ammonia synthesis via an associative mechanism [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 177-184. |
[12] | Xuanyi Jia, Xiaomin Hu, Qiao Wang, Baiquan Chen, Xingyue Xie, Lihong Huang. Auto-thermal reforming of acetic acid for hydrogen production by ZnxNiyCrOm±δ catalysts: Effect of Cr promoted Ni-Zn intermetallic compound [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 216-221. |
[13] | Yichao Wu, Zhiwei Xie, Xiaofeng Gao, Xian Zhou, Yangzhi Xu, Shurui Fan, Siyu Yao, Xiaonian Li, Lili Lin. The highly selective catalytic hydrogenation of CO2 to CO over transition metal nitrides [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 248-254. |
[14] | Feng Guo, Haoran Sun, Yuxing Shi, Fengyu Zhou, Weilong Shi. CdS nanoparticles decorated hexagonal Fe2O3 nanosheets with a Z-scheme photogenerated electron transfer path for improved visible-light photocatalytic hydrogen production [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 266-274. |
[15] | Liuting Zhang, Haijie Yu, Zhiyu Lu, Changhao Zhao, Jiaguang Zheng, Tao Wei, Fuying Wu, Beibei Xiao. The effect of different Co phase structure (FCC/HCP) on the catalytic action towards the hydrogen storage performance of MgH2 [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 343-352. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||