[1] J. Li, S.Y. Hu, History and future of the coal and coal chemical industry in China, Resour. Conserv. Recycl. 124 (2017) 13-24. [2] K.C. Xie, W.Y. Li, W. Zhao, Coal chemical industry and its sustainable development in China, Energy 35 (11) (2010) 4349-4355. [3] D. Xiang, S.Y. Yang, Z.H. Mai, Y. Qian, Comparative study of coal, natural gas, and coke-oven gas based methanol to olefins processes in China, Comput. Chem. Eng. 83 (2015) 176-185. [4] J.J. Chen, Y. Qian, S.Y. Yang, Conceptual design and techno-economic analysis of a coal to methanol and ethylene glycol cogeneration process with low carbon emission and high efficiency, ACS Sustain. Chem. Eng. 8 (13) (2020) 5229-5239. [5] D. Weber, T.N. He, M. Wong, C. Moon, A. Zhang, N. Foley, N.J. Ramer, C. Zhang, Recent advances in the mitigation of the catalyst deactivation of CO2 hydrogenation to light olefins, Catalysts 11 (12) (2021) 1447. [6] I.A. da Silva, C.J.A. Mota, Conversion of CO2 to light olefins over iron-based catalysts supported on niobium oxide, Front. Energy Res. 7 (2019) 49. [7] J.W. Zhong, X.F. Yang, Z.L. Wu, B.L. Liang, Y.Q. Huang, T. Zhang, State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol, Chem. Soc. Rev. 49 (5) (2020) 1385-1413. [8] M. Perez-Fortes, J.C. Schoneberger, A. Boulamanti, G. Harrison, E. Tzimas, Formic acid synthesis using CO2 as raw material: techno-economic and environmental evaluation and market potential, Int. J. Hydrog. Energy 41 (37) (2016) 16444-16462. [9] D. Kim, J. Han, Comprehensive analysis of two catalytic processes to produce formic acid from carbon dioxide, Appl. Energy 264 (2020) 114711. [10] M. Younas, L.L. Kong, M.J.K. Bashir, H. Nadeem, A. Shehzad, S. Sethupathi, Recent advancements, fundamental challenges, and opportunities in catalytic methanation of CO2, Energy Fuels 30 (11) (2016) 8815-8831. [11] K. Atsonios, K.D. Panopoulos, E. Kakaras, Thermocatalytic CO2 hydrogenation for methanol and ethanol production: process improvements, Int. J. Hydrog. Energy 41 (2) (2016) 792-806. [12] B. Anicic, P. Trop, D. Goricanec, Comparison between two methods of methanol production from carbon dioxide, Energy 77 (2014) 279-289. [13] J. Artz, T.E. Muller, K. Thenert, J. Kleinekorte, R. Meys, A. Sternberg, A. Bardow, W. Leitner, Sustainable conversion of carbon dioxide: an integrated review of catalysis and life cycle assessment, Chem. Rev. 118 (2) (2018) 434-504. [14] J.A. Baak, A.K. Pozarlik, M.J. Arentsen, G. Brem, Techno-economic study of a zero-emission methanol based energy storage system, Energy Convers. Manag. 182 (2019) 530-545. [15] Y.Y. Jiang, Z. Li, S.M. Zheng, H.F. Xu, Y.J. Zhou, Z.Q. Gao, C.X. Meng, S.Y. Li, Establishing an enzyme cascade for one-pot production of α-olefins from low-cost triglycerides and oils without exogenous H2O2 addition, Biotechnol. Biofuels 13 (2020) 52. [16] X.X. Wang, W. Chen, T.J. Lin, J. Li, F. Yu, Y.L. An, Y.Y. Dai, H. Wang, L.S. Zhong, Y.H. Sun, Effect of the support on cobalt carbide catalysts for sustainable production of olefins from syngas, Chin. J. Catal. 39 (12) (2018) 1869-1880. [17] H. Olivier-Bourbigou, P.A.R. Breuil, L. Magna, T. Michel, M.F. Espada Pastor, D. Delcroix, Nickel catalyzed olefin oligomerization and dimerization, Chem. Rev. 120 (15) (2020) 7919-7983. [18] D.S. McGuinness, Olefin oligomerization via metallacycles: dimerization, trimerization, tetramerization, and beyond, Chem. Rev. 111 (3) (2011) 2321-2341. [19] D. Xiang, Y. Qian, Y. Man, S.Y. Yang, Techno-economic analysis of the coal-to-olefins process in comparison with the oil-to-olefins process, Appl. Energy 113 (2014) 639-647. [20] R. Rivera-Tinoco, M. Farran, C. Bouallou, F. Aupretre, S. Valentin, P. Millet, J.R. Ngameni, Investigation of power-to-methanol processes coupling electrolytic hydrogen production and catalytic CO2 reduction, Int. J. Hydrog. Energy 41 (8) (2016) 4546-4559. [21] A.A. Kiss, J.J. Pragt, H.J. Vos, G. Bargeman, M.T. de Groot, Novel efficient process for methanol synthesis by CO2 hydrogenation, Chem. Eng. J. 284 (2016) 260-269. [22] J.P. Zhang, Z.W. Li, Z.H. Zhang, K. Feng, B.H. Yan, Can thermocatalytic transformations of captured CO2 reduce CO2 emissions? Appl. Energy 281 (2021) 116076. [23] Z.T. Zhao, J.Y. Jiang, F. Wang, An economic analysis of twenty light olefin production pathways, J. Energy Chem. 56 (2021) 193-202. [24] C.H. Vo, C. Mondelli, H. Hamedi, J. Perez-Ramirez, S. Farooq, I.A. Karimi, Sustainability assessment of thermocatalytic conversion of CO2 to transportation fuels, methanol, and 1-propanol, ACS Sustain. Chem. Eng. 9 (31) (2021) 10591-10600. [25] J.P. Zhang, Z.W. Li, Z.H. Zhang, R. Liu, B.Z. Chu, B.H. Yan, Techno-economic analysis of integrating a CO2 hydrogenation-to-methanol unit with a coal-to-methanol process for CO2 reduction, ACS Sustain. Chem. Eng. 8 (49) (2020) 18062-18070. [26] S.Y. Yang, Q.C. Yang, H.C. Li, X. Jin, X.X. Li, Y. Qian, An integrated framework for modeling, synthesis, analysis, and optimization of coal gasification-based energy and chemical processes, Ind. Eng. Chem. Res. 51 (48) (2012) 15763-15777. [27] A. Wolf, A. Jess, C. Kern, Syngas production via reverse water-gas shift reaction over a Ni-Al2O3 catalyst: catalyst stability, reaction kinetics, and modeling, Chem. Eng. Technol. 39 (6) (2016) 1040-1048. [28] H.M. Torres Galvis, J.H. Bitter, T. Davidian, M. Ruitenbeek, A.I. Dugulan, K.P. de Jong, Iron particle size effects for direct production of lower olefins from synthesis gas, J. Am. Chem. Soc. 134 (39) (2012) 16207-16215. [29] B.B. Hallac, K. Keyvanloo, J.D. Hedengren, W.C. Hecker, M.D. Argyle, An optimized simulation model for iron-based Fischer-Tropsch catalyst design: transfer limitations as functions of operating and design conditions, Chem. Eng. J. 263 (2015) 268-279. [30] Q. Yang, Q.C. Yang, S.M. Xu, S. Zhu, D.W. Zhang, Technoeconomic and environmental analysis of ethylene glycol production from coal and natural gas compared with oil-based production, J. Clean. Prod. 273 (2020) 123120. [31] Y. Liu, J.F. Chen, J. Bao, Y. Zhang, Manganese-modified Fe3O4 microsphere catalyst with effective active phase of forming light olefins from syngas, ACS Catal. 5 (6) (2015) 3905-3909. [32] X.Q. Chen, D.H. Deng, X.L. Pan, Y.F. Hu, X.H. Bao, N-doped graphene as an electron donor of iron catalysts for CO hydrogenation to light olefins, Chem. Commun. 51 (1) (2015) 217-220. [33] G. Leonzio, Methanol synthesis: optimal solution for a better efficiency of the process, Processes 6 (3) (2018) 20. [34] B. Lee, C. Choe, H. Kim, A. Kim, Y.U. Shin, J. Haider, H. Lim, Economic parity analysis of green methanol synthesis using water electrolysis based on renewable energy, ACS Sustain. Chem. Eng. 9 (47) (2021) 15807-15818. [35] M. Carmo, D.L. Fritz, J. Mergel, D. Stolten, A comprehensive review on PEM water electrolysis, Int. J. Hydrog. Energy 38 (12) (2013) 4901-4934. [36] O. Schmidt, A. Gambhir, I. Staffell, A. Hawkes, J. Nelson, S. Few, Future cost and performance of water electrolysis: an expert elicitation study, Int. J. Hydrog. Energy 42 (52) (2017) 30470-30492. [37] J.Y. Zhao, L. Zhou, W.J. Zhou, H.T. Ren, Y.D. Yu, F.C. Wang, T.J. Ma, Techno-economic analysis and comparison of coal-based chemical technologies with consideration of water resources scarcity, Energy Strategy Rev. 38 (2021) 100754. [38] A. Buttler, H. Spliethoff, Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: a review, Renew. Sustain. Energy Rev. 82 (2018) 2440-2454. [39] C. Zhang, K.W. Jun, K.S. Ha, Y.J. Lee, S.C. Kang, Efficient utilization of greenhouse gases in a gas-to-liquids process combined with CO2/steam-mixed reforming and Fe-based Fischer-Tropsch synthesis, Environ. Sci. Technol. 48 (14) (2014) 8251-8257. [40] R.X. Gao, C.D. Zhang, K.W. Jun, S.K. Kim, H.G. Park, T.S. Zhao, L. Wang, H. Wan, G.F. Guan, Transformation of CO2 into liquid fuels and synthetic natural gas using green hydrogen: a comparative analysis, Fuel 291 (2021) 120111. [41] A.S. Alsuhaibani, S. Afzal, M. Challiwala, N.O. Elbashir, M.M. El-Halwagi, The impact of the development of catalyst and reaction system of the methanol synthesis stage on the overall profitability of the entire plant: a techno-economic study, Catal. Today 343 (2020) 191-198. [42] L.P. Jennergren, A note on the linear and annuity class of depreciation methods, Int. J. Prod. Econ. 204 (2018) 123-134. [43] Q.C. Yang, S. Zhu, Q. Yang, W.Q. Huang, P.J. Yu, D.W. Zhang, Z.B. Wang, Comparative techno-economic analysis of oil-based and coal-based ethylene glycol processes, Energy Convers. Manag. 198 (2019) 111814. |