[1] X.T. Qin, Y.H. Cao, H.W. Guan, Q.S. Hu, Z.H. Liu, J. Xu, B. Hu, Z.Y. Zhang, R. Luo, Resource utilization and development of phosphogypsum-based materials in civil engineering, J. Clean. Prod. 387 (2023) 135858. [2] Z.Q. Wei, Z.B. Deng, Research hotspots and trends of comprehensive utilization of phosphogypsum: Bibliometric analysis, J. Environ. Radioact. 242 (2022) 106778. [3] F.H. Wu, Y. Ren, G.F. Qu, S. Liu, B.J. Chen, X.X. Liu, C.Y. Zhao, J.Y. Li, Utilization path of bulk industrial solid waste: A review on the multi-directional resource utilization path of phosphogypsum, J. Environ. Manage. 313 (2022) 114957. [4] Y. Chernysh, O. Yakhnenko, V. Chubur, H. Roubik, Phosphogypsum recycling: A review of environmental issues, current trends, and prospects, Appl. Sci. 11 (4) (2021) 1575. [5] X. Li, X.F. Lv, L. Xiang, Review of the state of impurity occurrences and impurity removal technology in phosphogypsum, Materials 16 (16) (2023) 5630. [6] J. Yang, S.Y. Liu, Y.F. Wang, Y. Huang, Y.X. Sun, Q.X. Dai, H.P. Liu, L.P. Ma, Phosphogypsum resource utilization based on thermodynamic analysis, Chem. Eng. Technol. 45 (5) (2022) 776-790. [7] J. Qi, H. Zhu, P. Zhou, X. Wang, Z. Wang, S. Yang, D. Yang, B. Li, Application of phosphogypsum in soilization: A review, Int. J. Environ. Sci. Technol. 20 (9) (2023) 10449-10464. [8] R. Perez-Lopez, F. Macias, C.R. Canovas, A.M. Sarmiento, S.M. Perez-Moreno, Pollutant flows from a phosphogypsum disposal area to an estuarine environment: An insight from geochemical signatures, Sci. Total Environ. 553 (2016) 42-51. [9] X. Xia, L. Zhang, Z. Li, X. Yuan, C. Ma, Z. Song, G. Chen, Recovery of CaO from CaSO4 via CO reduction decomposition under different atmospheres, J. Environ. Manag. 301 (2022) 113855. [10] D. Ma, Q.H. Wang, Experimental study of CaS preparation from lignite-reduced phosphogypsum in a fluidized bed, J. Chem. Technol. Biotechnol. 98 (3) (2023) 756-772. [11] Y.Z. Liu, Q.J. Guo, Investigation into syngas generation from solid fuel using CaSO4-based chemical looping gasification process, Chin. J. Chem. Eng. 21 (2) (2013) 127-134. [12] Z. Miao, H.R. Yang, Y.X. Wu, H. Zhang, X.Y. Zhang, Experimental studies on decomposing properties of desulfurization gypsum in a thermogravimetric analyzer and multiatmosphere fluidized beds, Ind. Eng. Chem. Res. 51 (15) (2012) 5419-5423. [13] S. Wu, W.L. Wang, C.Z. Ren, X.L. Yao, Y.G. Yao, Q.S. Zhang, Z.F. Li, Calcination of calcium sulphoaluminate cement using flue gas desulfurization gypsum as whole calcium oxide source, Constr. Build. Mater. 228 (2019) 116676. [14] E.M. Gartner, D.E. MacPhee, A physico-chemical basis for novel cementitious binders, Cem. Concr. Res. 41 (7) (2011) 736-749. [15] W.Q. Hull, F. Schon, H. Zirngibl, Staff-industry collaborative report: Sulfuric acid from anhydrite, Ind. Eng. Chem. 49 (8) (1957) 1204-1214. [16] L. Zhang, M. Li, W.G. Xiang, J. Hu, S.Y. Chen, L.B. Duan, Feasibility analysis of calcination and decomposition process of phosphogypsum in circulating fluidized bed, Inorg. Chem. Ind. 55 (6) (2023) 85-91. [17] P.J. Xu, H. Li, Y.X. Chen, Experimental study on optimization of phosphogypsum suspension decomposition conditions under double catalysis, Materials 14 (5) (2021) 1120. [18] L.P. Ma, Y.L. Du, X.K. Niu, S.C. Zheng, W. Zhang, Thermal and kinetic analysis of the process of thermochemical decomposition of phosphogypsum with CO and additives, Ind. Eng. Chem. Res. 51 (19) (2012) 6680-6685. [19] I. Gruncharov, An investigation on the effects of additives during the thermochemical decomposition of phosphogypsum under isothermal conditions, J. Therm. Anal. 32 (6) (1987) 1739-1742. [20] I. Gruncharov, Y. Pelovski, G. Bechev, I. Dombalov, P. Kirilov, Effects of some admixtures on the decomposition of calcium sulphate, J. Therm. Anal. 33 (3) (1988) 597-602. [21] L. Sun, Z.J. Zhao, X.S. Yang, Y. Sun, Q.D. Li, C.H. Luo, Q. Zhao, Thermochemical decomposition of phosphogypsum with Fe-P slag via a solid-state reaction, Chin. J. Chem. Eng. 47 (2022) 113-119. [22] D.H. Lu, Q.L. Chen, C.Q. Li, S. Gong, Effect of potassium feldspar on the decomposition rate of phosphogypsum, J. Chem. Technol. Biotechnol. 96 (2) (2021) 374-383. [23] Y. Wang, T.M. Wan, Y.J. Zhong, X.D. Ma, Z.Y. Chen, X.L. Wang, Environmental sustainability of renewable phosphogypsum by CaS, J. Therm. Anal. Calorim. 139 (6) (2020) 3457-3471. [24] Z.Q. Yan, Z.A. Wang, H. Liu, Y.J. Tu, W. Yang, H.C. Zeng, J.R. Qiu, Decomposition and solid reactions of calcium sulfate doped with SiO2, Fe2O3 and Al2O3, J. Anal. Appl. Pyrolysis 113 (2015) 491-498. [25] N. Mihara, D. Kuchar, Y. Kojima, H. Matsuda, Reductive decomposition of waste gypsum with SiO2, Al2O3, and Fe2O3 additives, J. Mater. Cycles Waste Manag. 9 (1) (2007) 21-26. [26] L.P. Ma, X.K. Niu, J. Hou, S.C. Zheng, W.J. Xu, Reaction mechanism and influence factors analysis for calcium sulfide generation in the process of phosphogypsum decomposition, Thermochim. Acta 526 (1-2) (2011) 163-168. [27] L.P. zhu, S.C. Zheng, Experimental study of preparing CaS from phosphogypsum with lignite, IOP Conf. Ser.: Earth Environ. Sci. 267 (3) (2019) 032077. [28] H.W. He, L.F. Hao, C.G. Fan, S.G. Li, W.G. Lin, A two-step approach to phosphogypsum decomposition: Oxidation of CaS with CO2, Thermochim. Acta 708 (2022) 179122. [29] Q. Liu, X.Q. Ao, Q.L. Chen, Y. Xie, Y. Cao, Reaction characteristics and kinetics of phosphogypsum decomposition via synergistic reduction effect of composite reducing agent, J. Mater. Cycles Waste Manag. 24 (2) (2022) 595-605. [30] P. Zhang, B.X. Zhang, J. Chang, T. Wang, Jixin Zhang, Li Li, Investigation of process parameters of phosphogypsum for preparing calcium sulfoaluminate cement, Buildings (11)12 (2022) 1774. [31] P. Xue, A.J. Xu, D.F. He, Q.X. Yang, G.Q. Liu, F. Engstrom, B. Bjorkman, Research on the sintering process and characteristics of belite sulphoaluminate cement produced by BOF slag, Constr. Build. Mater. 122 (2016) 567-576. [32] W. Zhang, F.Z. Zhang, L.P. Ma, J. Yang, Y. Wei, D.Q. Kong, CO2 capture and process reinforcement by hydrolysate of phosphogypsum decomposition products, J. CO2 Util. 36 (2020) 253-262. [33] I. Barin, Thermochemical Data of Pure Substances, Wiley, 1995. [34] C. Ortiz, J.M. Valverde, R. Chacartegui, L.A. Perez-Maqueda, P. Gimenez, The calcium-looping (CaCO3/CaO) process for thermochemical energy storage in concentrating solar power plants, Renew. Sustain. Energy Rev. 113 (2019) 109252. [35] X. Jia, Q.H. Wang, K.F. Cen, L.M. Chen, An experimental study of CaSO4 decomposition during coal pyrolysis, Fuel 163 (2016) 157-165. [36] P.X. Yuan, X.D. Hu, J.J. Ma, T. Guo, Q.J. Guo, Thermogravimetric characteristics of corn straw and bituminous coal copyrolysis based the ilmenite oxygen carriers, Chin. J. Chem. Eng. 68 (2024) 8-15. [37] P.K. Mandal, T.K. Mandal, Anion water in gypsum (CaSO4·2H2O) and hemihydrate (CaSO4·1/2H2O), Cem. Concr. Res. 32 (2) (2002) 313-316. [38] J. Yang, B. Zhu, L.P. Ma, H.P. Liu, Investigation of Al2O3 and Fe2O3 transmission and transformation during the decomposition of phosphogypsum, Chin. J. Chem. Eng. 27 (5) (2019) 1125-1131. [39] T. Mattisson, A. Lyngfelt, Reaction between sulfur dioxide and limestone under periodically changing oxidizing and reducing ConditionsEffect of cycle time, Energy Fuels 12 (5) (1998) 905-912. [40] P.X. Yuan, X.D. Hu, Y.K. Li, T. Guo, J.J. Ma, Q.J. Guo, Multi-scale experimental and autothermal simulation of bituminous coal and corn straw chemical looping co-gasification for cleaner production of syngas, J. Clean. Prod. 434 (2024) 140166. |