Chinese Journal of Chemical Engineering ›› 2025, Vol. 78 ›› Issue (2): 251-262.DOI: 10.1016/j.cjche.2024.10.012
Previous Articles Next Articles
Jialin Chen, Zhenghao Yan, Runxia He, Yanpeng Ban, Huacong Zhou, Quansheng Liu
Received:
2024-05-12
Revised:
2024-10-11
Accepted:
2024-10-22
Online:
2024-12-02
Published:
2025-02-08
Supported by:
Jialin Chen, Zhenghao Yan, Runxia He, Yanpeng Ban, Huacong Zhou, Quansheng Liu
通讯作者:
Runxia He,E-mail:runxiahe@imut.edu.cn;Quansheng Liu,E-mail:liuqs@imut.edu.cn
基金资助:
Jialin Chen, Zhenghao Yan, Runxia He, Yanpeng Ban, Huacong Zhou, Quansheng Liu. Structural evolution of iron components and their action behavior on lignite combustion[J]. Chinese Journal of Chemical Engineering, 2025, 78(2): 251-262.
Jialin Chen, Zhenghao Yan, Runxia He, Yanpeng Ban, Huacong Zhou, Quansheng Liu. Structural evolution of iron components and their action behavior on lignite combustion[J]. 中国化学工程学报, 2025, 78(2): 251-262.
[1] Y. Shen, G.H. Lu, Y.H. Bai, P. Lv, Z.D. Yong, J.F. Wang, X.D. Song, L.J. Yan, G.S. Yu, Structural features of residue carbon formed by gasification of different coal macerals, Fuel. 320 (2022) 123918. [2] Y.M. Wang, Y. Li, G.J. Wang, Y.F. Wu, H. Yang, L.J. Jin, S. Hu, H.Q. Hu, Effect of Fe components in red mud on catalytic pyrolysis of low rank coal, J Energy Inst. 100 (2022) 1-9. [3] X. Li, C.W. Li, H.J. Zhang, W.F. Li, Analysis on the status and problems of lignite application in China, Appl. Chem. Ind. 49 (5) (2020) 1226-1230. (in Chinese). [4] J.P. Mathews, A.L. Chaffee, The molecular representations of coal-A review, Fuel. 96 (2012) 1-14. [5] A. Tahmasebi, J.L. Yu, Y.N. Han, F.K. Yin, S. Bhattacharya, D. Stokie, Study of chemical structure changes of chinese lignite upon drying in superheated steam, microwave, and hot air, Energ Fuels. 26 (6) (2012) 3651-3660. [6] D. Choudhury, A. Sarkar, L.C. Ram, An Autopsy of Spontaneous Combustion of Lignite, Int J Coal Prep Util. 36 (2) (2016) 109-123. [7] M. Misz-Kennan, J. Kus, D. Flores, C. Avila, Z. Buckun, N. Choudhury, K. Christanis, J.P. Joubert, S. Kalaitzidis, A.I. Karayigit, M. Malecha, M. Marques, P. Martizzi, J.M.K. O'Keefe, W. Pickel, G. Predeanu, S. Pusz, J. Ribeiro, S. Rodrigues, A.K. Singh, D. Zivotic, Development of a petrographic classification system for organic particles affected by self-heating in coal waste. (An ICCP Classification System, Self-heating Working Group-Commission III), Int J Coal Geol. 220 (2020) 103411. [8] Y.N. Zhang, L. Chen, J. Deng, J.Y. Zhao, H.T. Li, H. Yang, Influence of granularity on thermal behaviour in the process of lignite spontaneous combustion, J Therm Anal Calorim. 135 (4) (2019) 2247-2255. [9] B.B. Beamish, A. Arisoy, Effect of mineral matter on coal self-heating rate, Fuel. 87 (1) (2008) 125-130. [10] X.Z. Gong, Z.C. Guo, Z. Wang, Variation on anthracite combustion efficiency with CeO2 and Fe2O3 addition by differential thermal analysis (DTA), Energy. 35 (2) (2010) 506-511. [11] X.Z. Gong, S. Zhang, Catalytic effects of CeO2/Fe2O3 and inherent mineral matter on anthracite combustion reactions and its kinetic analysis, Energy Fuels. 31 (11) (2017) 12867-12874. [12] J. Xu, X.L. Zhang, T.J. Jin, Effect of Fe2O3 and K2CO3 on combustion and catalytic mechanism analysis of high ash coal from Huaibei Mining Area, Bull. Chin. Ceram. Soc. 35 (06) (2016) 1841-1846. (in Chinese). [13] B.B. Beamish, J. Theiler, Coal spontaneous combustion: Examples of the self-heating incubation process, Int J Coal Geol. 215 (2019) 103297. [14] B. Lu, J.R. Wang, L. Qiao, J.Q. Chen, Effect of electrochemical oxidation of pyrite on coal spontaneous combustion, Int J Coal Prep Util. 42 (6) (2022) 1818-1829. [15] J. Deng, X.F. Ma, Y.T. Zhang, Y.Q. Li, W.W. Zhu, Effects of pyrite on the spontaneous combustion of coal, Int J Coal Sci Techn. 2 (4) (2015) 306-311. [16] A. Arisoy, B. Beamish, Mutual effects of pyrite and moisture on coal self-heating rates and reaction rate data for pyrite oxidation, Fuel. 139 (2015) 107-114. [17] F.Q. Yang, Y. Lai, Y.Z. Song, Determination of the influence of pyrite on coal spontaneous combustion by thermodynamics analysis, Process Saf Environ. 129 (2019) 163-167. [18] C. Ding, Z.X. Li, J.R. Wang, P.B. Duanmu, B. Lu, D.M. Gao, Experimental research on the spontaneous combustion of coal with different metamorphic degrees induced by pyrite and its oxidation products, Fuel. 318 (2022) 123642. [19] C.P. Wang, Z.J. Bai, Y. Xiao, J. Deng, C.M. Shu, Effects of FeS2 on the process of coal spontaneous combustion at low temperatures, Process Saf Environ. 142 (2020) 165-173. [20] A. Saffari, F. Sereshki, M. Ataei, Evaluation effect of macerals petrographic and pyrite contents on spontaneous coal combustion in Tabas Parvadeh and Eastern Alborz coal mines in Iran, Int J Coal Prep Util. 42(1) (2022) 12-29. [21] J. Cheng, F. Zhou, X.X. Xuan, J.Z. Liu, J.H. Zhou, K.F. Cen, Comparison of the catalytic effects of eight industrial wastes rich in Na, Fe, Ca and Al on anthracite coal combustion, Fuel. 187 (1) (2017) 398-402. [22] Y.H. Liu, D.F. Che, Y.T. Li, S.E. Hui, T.M. Xu, Effect of iron compounds on coal combustion characteristics, Journal of Xi'an Jiaotong University. 34 (9) (2000) 20-24. (in Chinese). [23] C. Zou, J.X. Zhao, Investigation of iron-containing powder on coal combustion behavior, J Energy Inst. 90 (5) (2017) 797-805. [24] L. Qiao, Study on catalytic mechanism to spontaneous combustion of coal and inerting of metal compounds in coal, Ph. D. Thesis, Liaoning Technical University, 2020. (in Chinese). [25] T.T. Lv, L.Y. Kou, T. Hu, L.B. Zhang, L. Yang, Enhanced combustion of bituminous coal and semicoke mixture by ferric oxide with thermographic and kinetic analyses, Mater. 14 (24) (2021) 7696. [26] C.J. Huang, S.J. Wang, F. Wu, P. Zhu, Z.H. Zhou, J.M. Yi, The effect of waste slag of the steel industry on pulverized coal combustion, Energ Source Part A. 35 (20) (2013) 1891-1897. [27] L.B. Qin, Y.J. Zhang, J. Han, W.S. Chen, Influences of waste iron residue on combustion efficiency and polycyclic aromatic hydrocarbons release during coal catalytic combustion, Aerosol Air Qual Res. 15 (7) (2015) 2720-2729. [28] X.Z. Gong, Z.C. Guo, Z. Wang, Reactivity of pulverized coals during combustion catalyzed by CeO2 and Fe2O3, Combust Flame. 157 (2) (2010) 351-356. [29] Y.H. Liu, D.F. Che, T.M. Xu, Catalytic reduction of SO2 during combustion of typical Chinese coals, Fuel Process Technol. 79 (2) (2002) 157-169. [30] X.L. Yao, K. Wang, W. Wang, T.T. Zhang, W. Wang, X.Y. Yang, F. Qian, H.L. Li, Reduction of polycyclic aromatic hydrocarbons (PAHs) emission from household coal combustion using ferroferric oxide as a coal burning additive, Chemosphere. 252 (2020) 126489. [31] S.S. Daood, G. Ord, T. Wilkinson, W. Nimmo, Investigation of the influence of metallic fuel improvers on coal combustion/pyrolysis, Energy Fuels. 28 (2) (2014) 1515-1523. [32] B.V. Reddy, S.N. Khanna, Self-stimulated NO reduction and CO oxidation by iron oxide clusters, Phys Rev Lett. 93 (6) (2004) 068301. [33] N. Tsubouchi, Y. Ohtsuka, Nitrogen chemistry in coal pyrolysis: catalytic roles of metal cations in secondary reactions of volatile nitrogen and char nitrogen. Fuel Process Technol. 89 (4) (2008) 379-390. [34] S.S. Daood, G. Ord, T. Wilkinson, W. Nimmo, Fuel additive technology-NOx reduction, combustion efficiency and fly ash improvement for coal fired power stations, Fuel. 134 (2014) 293-306. [35] F. Wu, S.J. Wang, G. Zhang, P. Zhu, Z.Y. Wang, S.T. Chen, Z. Zhou. Influence of steel industrial wastes on burnout rate and NOx release during the pulverized coal catalytic combustion, J Energy Inst. 87 (2) (2014) 134-139. [36] Y.M. Song, W. Feng, Y.F. Wang, N. Li, Y.P. Ban, Y.Y. Teng, K.D. Zhi, R.X. He, H.C. Zhou, Q.S. Liu, Structure characteristics of unreacted residues in combustion of Shengli lignite and effect of adding Fe components, J. Fuel Chem. Technol. 44 (12) (2016) 1447-1456. (in Chinese). [37] Y.M. Song, W. Feng, N. Li, Y. Li, K.D. Zhi, Y.Y. Teng, R.X. He, H.C. Zhou, Q.S. Liu, Effects of demineralization on the structure and combustion properties of Shengli lignite, Fuel. 183 (2016) 659-667. [38] Z.H. Yan, D.D. Wang, R.X. He, N. Li, H.C. Zhou, Y.F. Wang, Y.M. Song, K.D. Zhi, Y.Y. Teng, Q.S. Liu, Microstructural characteristics of Shengli lignite during low-temperature oxidation and promotion effect of iron speciation, Fuel. 255 (2019) 115830. [39] Q. Zhang, J. Fang, Z.W. Meng, C. Chen, Z.H. Qin, Thermogravimetric analysis of soot combustion in the presence of ash and soluble organic fraction, Rsc Adv. 10 (55) (2020) 33436-33443. [40] Y. Yang, J. Fang, J.F. Huang, Z.H. Qin, Q. Zhang, P. Pu, S.Z. Pan, Influence of different thermal aging conditions on soot combustion with catalyst by thermogravimetric analysis, Mater. 14 (13) (2021) 3647. [41] X. Huang, J.P. Cao, X.Y. Zhao, J.X. Wang, X. Fan, Y.P. Zhao, X.Y. Wei, Pyrolysis kinetics of soybean straw using thermogravimetric analysis, Fuel. 169 (2016) 93-98. [42] Q.H. Wang, X.Y. Lu, C. Ma, Z.M. Luo, Q.W. Li, J. Deng, Y.J. Sheng, B. Peng, Comparative study of the kinetic characteristics of coal spontaneous combustion, J Therm Anal Calorim. 148 (2023) 4463-4476. [43] M.B. Zhang, Z.C. Wang, L.K. Wang, Z. Zhang, D.Y. Zhang, C.X. Li, Experimental study and thermodynamic analysis of coal spontaneous combustion characteristics, Combust Theor Model. 27(1) (2023) 118-137. [44] W. Yu, Y.P. Hsu, C.S. Tan, Synthesis of rhodium-platinum bimetallic catalysts supported on SBA-15 by chemical fluid deposition for the hydrogenation of terephthalic acid in water, Appl Catal B-Environ. 196 (2016) 185-192. [45] Y. Yamada, H. Yasuda, K. Murota, M. Nakamura, T. Sodesawa, S. Sato, Analysis of heat-treated graphite oxide by X-ray photoelectron spectroscopy, J Mater Sci. 48 (2013) 8171-8198. [46] J.R. Li, J.S. Chen, Y.K. Yu, C. He, Fe-Mn-Ce/ceramic powder composite catalyst for highly volatile elemental mercury removal in simulated coal-fired flue gas, J Ind Eng Chem. 25 (2015) 352-358. [47] S.J. Wu, J.W. Lu, Z.C. Ding, N. Li, F.L. Fu, B. Tang, Cr(VI) removal by mesoporous FeOOH polymorphs: performance and mechanism, Rsc Adv. 6 (85) (2016) 82118-82130. [48] J. Yue, X.C. Jiang, Y.V. Kaneti, A. Yu, Deposition of gold nanoparticles on β-FeOOH nanorods for detecting melamine in aqueous solution, J Colloid Interf Sci. 367 (2012) 204-212. [49] H. Tanaka, N. Hatanaka, M. Muguruma, T. Ishikawa, T. Nakayama, Influence of anions on the formation of artificial steel rust particles prepared from acidic aqueous Fe(III) solution, Corros Sci. 66 (2013) 136-141. [50] M. Zhang, D.H. Han, P.X. Lu, PEDOT encapsulated β-FeOOH nanorods: synthesis, characterization and application for sodium-ion batteries, Electrochim Acta. 238 (2017) 330-336. [51] T.L. Panikorovskii, A.S. Mazur, A.V. Bazai, V.V. Shilovskikh, E.V. Galuskin, N.V. Chukanov, V.S. Rusakov, Y.M. Zhukov, E.Y. Avdontseva, S.M. Aksenov, S.V. Krivovichev, X-ray diffraction and spectroscopic study of wiluite: implications for the vesuvianite-group nomenclature, Phys Chem Miner. 44 (8) (2017) 577-593. [52] D.M. Yao, D.C. Wang, L.J. Jin, Y. Li, H. Yang, T.T. Wang, H.Q. Hu, Preparation of Ce-Mn/Fe2O3 catalysts for steam catalytic cracking of coal tar, Chemistryselect. 3 (44) (2018) 12405-12717. |
[1] | Xiaoping Xu, Ting Zhang, Zhimin Mu, Yongli Ma, Mingyan Liu. Application of wavelet neural network with chaos theory for enhanced forecasting of pressure drop signals in vapor-liquid-solid fluidized bed evaporator [J]. Chinese Journal of Chemical Engineering, 2025, 78(2): 67-81. |
[2] | Jianfang Liu, Hongwei Huang, Jie Yang, Laishuan Liu, Yu Li. Gold nanoparticles on Fe-doped Co3O4 for enhanced low-temperature CO oxidation [J]. Chinese Journal of Chemical Engineering, 2025, 78(2): 175-186. |
[3] | Zhuo Wang, Zetao Jin, Hanqi Ning, Baishun Jiang, Kaiyuan Xie, Shufeng Zuo, Qiuyan Wang. Study on sulfur resistance of MnO2/Beta zeolite in toluene catalytic combustion: The effect of increased acidity on catalytic performance [J]. Chinese Journal of Chemical Engineering, 2025, 78(2): 187-195. |
[4] | Yin Zhang, Shuai Yan, Zihong Xia, Caixia Chen, Xuan Qu, Jicheng Bi. CFD investigation in the temperature effect on coal catalytic hydrogasification in the pressurized bubbling fluidized bed [J]. Chinese Journal of Chemical Engineering, 2025, 78(2): 205-217. |
[5] | Qingzhao Liu, Yang Qin, Guodong Zhu, Xubin Zhang, Fumin Wang, Guobing Li, Shuai Liu, Zhiwei Zhang, Bingxin Zhu, Zheng Wang. Numerical simulation of power and flow field characteristics of different spiral stirred reactors [J]. Chinese Journal of Chemical Engineering, 2025, 78(2): 218-231. |
[6] | Shijie Liu, Jin Liang, Qin Li, Hui Yu, Haoliang Wang, Xiangyang Li, Chao Yang. Effects of internals on macroscopic fluid dynamics in a bubble column [J]. Chinese Journal of Chemical Engineering, 2025, 77(1): 19-29. |
[7] | Lejun Wu, Jingbo Gao, Jing Li, Haibo Liu, Qiang Sun. The investigation of Gemini surfactant effects on CH4 and CO2 hydrates [J]. Chinese Journal of Chemical Engineering, 2025, 77(1): 167-174. |
[8] | Yun Zhou, Wenzhi Xia, Guangsheng Wei, Haichuan Wang. Impact of CO2 as an oxidant on the decarburization and chromium retention and an approach for CO2 recycling [J]. Chinese Journal of Chemical Engineering, 2025, 77(1): 203-206. |
[9] | Limin Wang, Jinrong Duan, Bei Liu, Zhi Li, Guangjin Chen. The effect of ethylene-vinyl acetate copolymer on the formation process of wax crystals and hydrates [J]. Chinese Journal of Chemical Engineering, 2024, 73(9): 109-119. |
[10] | Jing Chen, Wenqi Zhong, Guanwen Zhou, Jinming Li, Shasha Ding. Desulfurization characteristics of slaked lime and regulation optimization of circulating fluidized bed flue gas desulfurization process—A combined experimental and numerical simulation study [J]. Chinese Journal of Chemical Engineering, 2024, 73(9): 163-175. |
[11] | Jianzhi Wang, Xugen Li, Cheng Zhang, Yuan Pu, Jiawu Liu, Jie Liu, Yanping Liu, Xiao Lin, Faquan Yu. Polygonal mesopores microflower catalysts for the catalytic oxidation of 2-nitro-4-methylsulfonyltoluene to 2-nitro-4-methylsulfonylbenzoic acid in a continuous-flow microreactor [J]. Chinese Journal of Chemical Engineering, 2024, 73(9): 212-221. |
[12] | Xin Li, Yue Ma, Xuning Wang, Jianguo Wu, Dong Cao, Daojian Cheng. Regulating the oxidation state of Pd to enhance the selective hydrogenation for 5-hydroxymethylfurfural [J]. Chinese Journal of Chemical Engineering, 2024, 72(8): 60-68. |
[13] | Xueqing Ren, Jiahao Niu, Yan Li, Lei Li, Chao Zhang, Qiang Guo, Qiaoling Zhang, Weizhou Jiao. Photocatalytic ozonation-based degradation of phenol by ZnO-TiO2 nanocomposites in spinning disk reactor [J]. Chinese Journal of Chemical Engineering, 2024, 72(8): 74-84. |
[14] | Qinghang Deng, Junqi Weng, Lei Zhou, Guanghua Ye, Xinggui Zhou. Effect of internal structure of a batch-processing wet-etch reactor on fluid flow and heat transfer [J]. Chinese Journal of Chemical Engineering, 2024, 72(8): 177-186. |
[15] | Yucong Gong, Xiangli Li, Daqing Ma, Lai Wang, Lin Zhou, Caiwei Lu, Yi Xiao, Xinfu Zhang. Plasma membrane-anchored fluorescent tracker based on boron-dipyrromethene [J]. Chinese Journal of Chemical Engineering, 2024, 72(8): 220-225. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 2
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 14
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||