Chinese Journal of Chemical Engineering ›› 2025, Vol. 80 ›› Issue (4): 315-327.DOI: 10.1016/j.cjche.2024.11.023
Previous Articles Next Articles
Yahui Gao1,2, Gendi Song1, Yanjie Xu1,2, Yuyu Sun1, Yong Feng1, Huijun Tan3, Wenjie Tian1,2
Received:
2024-08-08
Revised:
2024-09-30
Accepted:
2024-11-27
Online:
2025-03-04
Published:
2025-04-28
Contact:
Yahui Gao,E-mail:gaoyahui68@163.com;Gendi Song,E-mail:songgendi@lit.edu.cn;Huijun Tan,E-mail:sophie93@sjtu.edu.cn;Wenjie Tian,E-mail:twj7210@126.com
Supported by:
Yahui Gao1,2, Gendi Song1, Yanjie Xu1,2, Yuyu Sun1, Yong Feng1, Huijun Tan3, Wenjie Tian1,2
通讯作者:
Yahui Gao,E-mail:gaoyahui68@163.com;Gendi Song,E-mail:songgendi@lit.edu.cn;Huijun Tan,E-mail:sophie93@sjtu.edu.cn;Wenjie Tian,E-mail:twj7210@126.com
基金资助:
Yahui Gao, Gendi Song, Yanjie Xu, Yuyu Sun, Yong Feng, Huijun Tan, Wenjie Tian. In-situ synthesis of mixed-valence manganese oxide@S, P self-codoped carbon@reduced graphene oxide composites by enhanced surface interaction for high-performance all-solid-state supercapacitors[J]. Chinese Journal of Chemical Engineering, 2025, 80(4): 315-327.
Yahui Gao, Gendi Song, Yanjie Xu, Yuyu Sun, Yong Feng, Huijun Tan, Wenjie Tian. In-situ synthesis of mixed-valence manganese oxide@S, P self-codoped carbon@reduced graphene oxide composites by enhanced surface interaction for high-performance all-solid-state supercapacitors[J]. 中国化学工程学报, 2025, 80(4): 315-327.
[1] P. Lamba, P. Singh, P. Singh, P. Singh, Bharti, A. Kumar, M. Gupta, Y. Kumar, Recent advancements in supercapacitors based on different electrode materials: Classifications, synthesis methods and comparative performance, J. Energy Storage 48 (2022) 103871. [2] H.W. Hu, C. Yang, F.Y. Chen, J.H. Li, X.L. Jia, Y.T. Wang, X.L. Zhu, Z.M. Man, G. Wu, W.X. Chen, High-entropy engineering reinforced surface electronic states and structural defects of hierarchical metal Oxides@Graphene fibers toward high-performance wearable supercapacitors, Adv. Mater. 36 (35) (2024) e2406483. [3] M.N. Sakib, S. Ahmed, S.M. Sultan Mahmud Rahat, S.B. Shuchi, A review of recent advances in manganese-based supercapacitors, J. Energy Storage 44 (2021) 103322. [4] S. Li, L.L. Yu, Y.T. Shi, J. Fan, R.B. Li, G.D. Fan, W.L. Xu, J.T. Zhao, Greatly enhanced faradic capacities of 3D porous Mn3O4/G composites as lithium-ion anodes and supercapacitors by C-O-Mn bonding, ACS Appl. Mater. Interfaces 11 (10) (2019) 10178-10188. [5] L. Shan, Y. Zhang, Y. Xu, M.J. Gao, T. Xu, C.L. Si, Wood-based hierarchical porous nitrogen-doped carbon/manganese dioxide composite electrode materials for high-rate supercapacitor, Adv. Compos. Hybrid Mater. 6 (5) (2023) 174. [6] Y. Ding, Y.C. Li, L. Wang, X.H. Han, L.J. Zhu, S.R. Wang, A novel approach for preparing nitrogen-doped porous nanocomposites for supercapacitors, Fuel 304 (2021) 121449. [7] Y.H. Lin, T.Y. Wei, H.C. Chien, S.Y. Lu, Manganese oxide/carbon aerogel composite: an outstanding supercapacitor electrode material, Adv. Energy Mater. 1 (5) (2011) 901-907. [8] H.N. Jia, Z.Y. Wang, C. Li, X.Q. Si, X.H. Zheng, Y.F. Cai, J.H. Lin, H.Y. Liang, J.L. Qi, J. Cao, J.C. Feng, W.D. Fei, Designing oxygen bonding between reduced graphene oxide and multishelled Mn3O4 hollow spheres for enhanced performance of supercapacitors, J. Mater. Chem. A 7 (12) (2019) 6686-6694. [9] B.S. Singu, E.S. Goda, K.R. Yoon, Carbon Nanotube-Manganese oxide nanorods hybrid composites for high-performance supercapacitor materials, J. Ind. Eng. Chem. 97 (2021) 239-249. [10] S.F. Zhang, L. Li, Y.L. Liu, Q.L. Li, Nanocellulose/carbon nanotube/manganese dioxide composite electrodes with high mass loadings for flexible supercapacitors, Carbohydr. Polym. 326 (2024) 121661. [11] M.Y. Wang, Y. Huang, N. Zhang, K. Wang, X.F. Chen, X. Ding, A facile synthesis of controlled Mn3O4 hollow polyhedron for high-performance lithium-ion battery anodes, Chem. Eng. J. 334 (2018) 2383-2391. [12] M.X. Liu, M.C. Shi, W.J. Lu, D.Z. Zhu, L.C. Li, L.H. Gan, Core-shell reduced graphene oxide/MnOx @carbon hollow nanospheres for high performance supercapacitor electrodes, Chem. Eng. J. 313 (2017) 518-526. [13] D. Malavekar, S. Pujari, S. Jang, S. Bachankar, J.H. Kim, Recent development on transition metal oxides-based core-shell structures for boosted energy density supercapacitors, Small 20 (31) (2024) e2312179. [14] W. Guo, C. Yu, S.F. Li, Z. Wang, J.H. Yu, H.W. Huang, J.S. Qiu, Strategies and insights towards the intrinsic capacitive properties of MnO2 for supercapacitors: Challenges and perspectives, Nano Energy 57 (2019) 459-472. [15] C.A. Romano, M.W. Zhou, Y. Song, V.H. Wysocki, A.C. Dohnalkova, L. Kovarik, L. Pasa-Tolic, B.M. Tebo, Biogenic manganese oxide nanoparticle formation by a multimeric multicopper oxidase Mnx, Nat. Commun. 8 (1) (2017) 746. [16] S. Comert, O. Tepe, Production and characterization of biogenic manganese oxides by manganese-adapted Pseudomonas putida NRRL B-14878, geomicrobiol j 37 (8) (2020) 753-763. [17] R.Q. Wu, H.B. Wu, X.B. Jiang, J.Y. Shen, M. Faheem, X.Y. Sun, J.S. Li, W.Q. Han, L.J. Wang, X.D. Liu, The key role of biogenic manganese oxides in enhanced removal of highly recalcitrant 1, 2, 4-triazole from bio-treated chemical industrial wastewater, Environ. Sci. Pollut. Res. Int. 24 (11) (2017) 10570-10583. [18] Z. Zhang, Z.M. Zhang, H. Chen, J. Liu, C. Liu, H. Ni, C.S. Zhao, M. Ali, F. Liu, L. Li, Surface Mn(II) oxidation actuated by a multicopper oxidase in a soil bacterium leads to the formation of manganese oxide minerals, Sci. Rep. 5 (2015) 10895. [19] S. Namgung, C.M. Chon, G. Lee, Formation of diverse Mn oxides: a review of bio/geochemical processes of Mn oxidation, Geosci. J. 22 (2) (2018) 373-381. [20] J. Liu, T. Gu, L. Li, L. Li, Synthesis of MnO/C/NiO-doped porous Multiphasic composites for lithium-ion batteries by biomineralized Mn oxides from engineered Pseudomonas putida cells, Nanomaterials 11 (2) (2021) 361. [21] B.P. Hahn, J.W. Long, D.R. Rolison, Something from nothing: enhancing electrochemical charge storage with cation vacancies, Acc. Chem. Res. 46 (5) (2013) 1181-1191. [22] S. Yi, L. Wang, X. Zhang, C. Li, W.J. Liu, K. Wang, X.Z. Sun, Y.N. Xu, Z.X. Yang, Y. Cao, J. Sun, Y.W. Ma, Cationic intermediates assisted self-assembly two-dimensional Ti3C2Tx/rGO hybrid nanoflakes for advanced lithium-ion capacitors, Sci. Bull. 66 (9) (2021) 914-924. [23] P.H. Chen, W.Y. Zhou, Z.J. Xiao, S.Q. Li, H.L. Chen, Y.C. Wang, Z.B. Wang, W. Xi, X.G. Xia, S.S. Xie, In situ anchoring MnO nanoparticles on self-supported 3D interconnected graphene scroll framework: a fast kinetics boosted ultrahigh-rate anode for Li-ion capacitor, Energy Storage Mater. 33 (2020) 298-308. [24] G.Z. Jin, X.X. Xiao, S. Li, K.M. Zhao, Y.Z. Wu, D. Sun, F. Wang, Strongly coupled graphene/Mn3O4 composite with enhanced electrochemical performance for supercapacitor electrode, Electrochim. Acta 178 (2015) 689-698. [25] F.C. Boogerd, J.P. de Vrind, Manganese oxidation by leptothrix Discophora, J. Bacteriol. 169 (2) (1987) 489-494. [26] Y.H. Gao, L. Wang, F. Wang, Y.Y. Sun, Y.J. Xu, J. Li, L. Wang, Z.S. Lu, Ball milling combined with activation preparation of honeycomb-like porous carbon derived from peony seed shell for high-performance supercapacitors, J. Mater. Sci. Mater. Electron. 33 (16) (2022) 13023-13039. [27] D. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets, Nat. Nanotechnol. 3 (2) (2008) 101-105. [28] G.N. Liang, Y. Yang, S.M. Wu, Y.H. Jiang, Y.F. Xu, The generation of biogenic manganese oxides and its application in the removal of As(III) in groundwater, Environ. Sci. Pollut. Res. Int. 24 (21) (2017) 17935-17944. [29] Y. Ding, L.X. Dai, R. Wang, H.X. Wang, H.B. Zhang, W. Jiang, J. Tang, S.Q. Zang, Bio-inspired Mn3O4@N, P-doped carbon cathode for 2.6 V flexible aqueous asymmetric supercapacitors, Chem. Eng. J. 407 (2021) 126874. [30] F.M. Wu, J.P. Gao, X.G. Zhai, M.H. Xie, Y. Sun, H.Y. Kang, Q. Tian, H.X. Qiu, Hierarchical porous carbon microrods derived from albizia flowers for high performance supercapacitors, Carbon 147 (2019) 242-251. [31] W.J. Liu, X. Zhang, Y.N. Xu, L. Wang, Z. Li, C. Li, K. Wang, X.Z. Sun, Y.B. An, Z.S. Wu, Y.W. Ma, 2D graphene/MnO heterostructure with strongly stable interface enabling high-performance flexible solid-state lithium-ion capacitors, Adv. Funct. Mater. 32 (30) (2022) 2202342. [32] C.N. Butterfield, A.V. Soldatova, S.W. Lee, T.G. Spiro, B.M. Tebo, Mn(II, III) oxidation and MnO2 mineralization by an expressed bacterial multicopper oxidase, Proc. Natl. Acad. Sci. USA 110 (29) (2013) 11731-11735. [33] Y.L. Qin, B.W. Wang, S.P. Jiang, Q.S. Jiang, C.H. Huang, H.C. Chen, Strongly anchored MnO nanoparticles on graphene as high-performance anode materials for lithium-ion batteries, Ionics 26 (7) (2020) 3315-3323. [34] Y. Zhang, P.H. Chen, X. Gao, B. Wang, H. Liu, H. Wu, H.K. Liu, S.X. Dou, Nitrogen-doped graphene ribbon assembled core-sheath MnO@Graphene scrolls as hierarchically ordered 3D porous electrodes for fast and durable lithium storage, Adv. Funct. Mater. 26 (43) (2016) 7754-7765. [35] Q.L. Fang, X.F. Zhou, W. Deng, Y.W. Liu, Z. Zheng, Z.P. Liu, Nitrogen-doped graphene nanoscroll foam with high diffusion rate and binding affinity for removal of organic pollutants, Small 13 (14) (2017) 1603779. [36] T. Sharifi, E. Gracia-Espino, H. Reza Barzegar, X.E. Jia, F. Nitze, G.Z. Hu, P. Nordblad, C.W. Tai, T. Wagberg, Formation of nitrogen-doped graphene nanoscrolls by adsorption of magnetic γ-Fe2O3 nanoparticles, Nat. Commun. 4 (2013) 2319. [37] N. Okibe, M. Maki, K. Sasaki, T. Hirajima, Mn(II)-oxidizing activity of Pseudomonas sp. strain MM1 is involved in the formation of massive Mn sediments around sambe hot springs in Japan, Mater. Trans. 54 (10) (2013) 2027-2031. [38] M.Y. Gao, X.F. Wu, H.F. Qiu, Q.F. Zhang, K.K. Huang, S.H. Feng, Y. Yang, T.T. Wang, B. Zhao, Z.L. Liu, Reduced graphene oxide-mediated synthesis of Mn3O4 nanomaterials for an asymmetric supercapacitor cell, RSC Adv. 8 (37) (2018) 20661-20668. [39] J. Yao, S.S. Yao, F. Gao, L.M. Duan, M.T. Niu, J.H. Liu, Reduced graphene oxide/Mn3O4 nanohybrid for high-rate pseduocapacitive electrodes, J. Colloid Interface Sci. 511 (2018) 434-439. [40] J.F. Shi, M.X. Sun, H.M. Hu, One-step combustion synthesis of C-Mn3O4/MnO composites with high electrochemical performance for supercapacitor, Mater. Res. Express 6 (3) (2019) 035511. [41] A. Gangwar, T. Das, S.K. Shaw, N.K. Prasad, Nanocomposite of (α-Mn3O4/MnO)@rGO as a high performance electrode material for supercapacitors, Electrochim. Acta 390 (2021) 138823. [42] P.R. Garces Goncalves Jr, H.A. De Abreu, H.A. Duarte, Stability, structural, and electronic properties of hausmannite (Mn3O4) surfaces and their interaction with water, J. Phys. Chem. C 122 (36) (2018) 20841-20849. [43] S.P. Rong, P.Y. Zhang, F. Liu, Y.J. Yang, Engineering crystal facet of α-MnO2 nanowire for highly efficient catalytic oxidation of carcinogenic airborne formaldehyde, ACS Catal. 8 (4) (2018) 3435-3446. [44] G.X. Zhu, W. Zhu, Y. Lou, J. Ma, W.Q. Yao, R.L. Zong, Y.F. Zhu, Encapsulate α-MnO2 nanofiber within graphene layer to tune surface electronic structure for efficient ozone decomposition, Nat. Commun. 12 (1) (2021) 4152. [45] E. Sohouli, K. Adib, B. Maddah, M. Najafi, Preparation of a supercapacitor electrode based on carbon nano-Onions/manganese dioxide/iron oxide nanocomposite, J. Energy Storage 52 (2022) 104987. [46] M. Yang, D.S. Kim, S.B. Hong, J.W. Sim, J. Kim, S.S. Kim, B.G. Choi, MnO2 nanowire/biomass-derived carbon from hemp stem for high-performance supercapacitors, Langmuir 33 (21) (2017) 5140-5147. [47] A. Sumboja, C.Y. Foo, X. Wang, P.S. Lee, Large areal mass, flexible and free-standing reduced graphene oxide/manganese dioxide paper for asymmetric supercapacitor device, Adv. Mater. 25 (20) (2013) 2809-2815. [48] Y.Z. Zhang, T. Cheng, Y. Wang, W.Y. Lai, H. Pang, W. Huang, A simple approach to boost capacitance: flexible supercapacitors based on manganese Oxides@MOFs via chemically induced in situ self-transformation, Adv. Mater. 28 (26) (2016) 5242-5248. [49] Y.T. Hu, C. Guan, G.X. Feng, Q.Q. Ke, X.L. Huang, J. Wang, Flexible asymmetric supercapacitor based on structure-optimized Mn3O4/reduced graphene oxide nanohybrid paper with high energy and power density, Adv. Funct. Mater. 25 (47) (2015) 7291-7299. [50] Y.S. Wu, R. Feng, C.J. Song, S.T. Xing, Y.Z. Gao, Z.C. Ma, Effect of reducing agent on the structure and activity of manganese oxide octahedral molecular sieve (OMS-2) in catalytic combustion of o-xylene, Catal. Today 281 (2017) 500-506. [51] F. Gao, J.Y. Qu, Z.B. Zhao, Q. Zhou, B.B. Li, J.S. Qiu, A green strategy for the synthesis of graphene supported Mn3O4 nanocomposites from graphitized coal and their supercapacitor application, Carbon 80 (2014) 640-650. [52] G.Z. Zhao, Y.J. Li, G. Zhu, J.Y. Shi, T. Lu, L.K. Pan, Biomass-based N, P, and S self-doped porous carbon for high-performance supercapacitors, ACS Sustainable Chem. Eng. (2019) acssuschemeng.9b00725. [53] D.V. Lam, D.T. Dung, E. Roh, J.H. Kim, H. Kim, S.M. Lee, Metal-organic framework-templated graphitic carbon confining MnO/Mn3O4 nanoparticles via direct laser printing for electrocatalysis and supercapacitor, Adv. Mater. Interfaces 8 (22) (2021) 2101599. [54] D. Zhou, H.M. Lin, F. Zhang, H. Niu, L.R. Cui, Q. Wang, F.Y. Qu, Freestanding MnO2 nanoflakes/porous carbon nanofibers for high-performance flexible supercapacitor electrodes, Electrochim. Acta 161 (2015) 427-435. [55] N.N. Song, Y. Wu, W.C. Wang, D. Xiao, H.J. Tan, Y.P. Zhao, Layer-by-layer in situ growth flexible polyaniline/graphene paper wrapped by MnO2 nanoflowers for all-solid-state supercapacitor, Mater. Res. Bull. 111 (2019) 267-276. [56] Y. Wang, W.H. Lai, N. Wang, Z. Jiang, X.Y. Wang, P.C. Zou, Z.Y. Lin, H.J. Fan, F.Y. Kang, C.P. Wong, C. Yang, A reduced graphene oxide/mixed-valence manganese oxide composite electrode for tailorable and surface mountable supercapacitors with high capacitance and super-long life, Energy Environ. Sci. 10 (4) (2017) 941-949. [57] N. Zhao, L.B. Deng, D.W. Luo, P.X. Zhang, One-step fabrication of biomass-derived hierarchically porous carbon/MnO nanosheets composites for symmetric hybrid supercapacitor, Appl. Surf. Sci. 526 (2020) 146696. [58] A.T. Chidembo, S.H. Aboutalebi, K. Konstantinov, C.J. Jafta, H.K. Liu, K.I. Ozoemena, In situ engineering of urchin-like reduced graphene oxide-Mn2O3-Mn3O4 nanostructures for supercapacitors, RSC Adv. 4 (2) (2014) 886-892. |
[1] | Qin Cheng, Pengfei Ma, Ruize Yin, Chaodi Wang, Weiwei Xiong, Zhongyao Duan, Fu Yang, Junhao Zhang. Zn2+ significantly enhances the performance of petal-like Co-naphthalenetetracarboxylic acid MOF as an anode material for lithium-ion batteries [J]. Chinese Journal of Chemical Engineering, 2025, 79(3): 164-171. |
[2] | Alireza Nouri, Siew Fen Chua, Ebrahim Mahmoudi, Abdul Wahab Mohammad, Wei Lun Ang. Fabrication of graphene oxide decorated with poly(dimethyl amino ethyl methacrylate) brush for efficient Cr(VI) adsorption from aqueous solution [J]. Chinese Journal of Chemical Engineering, 2024, 73(9): 51-61. |
[3] | Feng Chen, Haoyu Li, Xianyan Qiao, Ruoyang Wang, Changyan Hu, Ting Chen, Yifan Niu, Benhe Zhong, Zhenguo Wu, Xiaodong Guo. The chance of sodium titanate anode for the practical sodium-ion batteries [J]. Chinese Journal of Chemical Engineering, 2024, 72(8): 226-244. |
[4] | Hong-Qiang Fan, Fei Li, Hong-Xing Zheng, Wu-ji Pan, Mei-Zhen Wu, Yashar Behnamian, Ju-Bo Peng, Dong-Hai Lin. Multiple factors influencing high-purity indium electrolytic refining [J]. Chinese Journal of Chemical Engineering, 2024, 71(7): 148-160. |
[5] | Zhaoli Wang, Wenjing Li, Yi Zhang, Yanyin Cheng, Junjian Yu, Tianming Dong, Xiaoyu Chi, Di Liu, Zhe Wang. Amine-functionalized metal organic framework@graphene oxide as filler in PAEK-containing carboxyl group membrane for ultrafiltration with ultra-high permeability and strong fouling resistance [J]. Chinese Journal of Chemical Engineering, 2024, 70(6): 93-103. |
[6] | Kaixin Han, Yibo Zeng, Yinghua Lu, Ping Zeng, Liang Shen. Aggregation-regulated bioreduction process of graphene oxide by Shewanella bacteria [J]. Chinese Journal of Chemical Engineering, 2024, 69(5): 56-62. |
[7] | Huanxi Xu, Peihua Lin, Pei-Jun Liu, Hai-Gang Liu, Hui-Bin Guo, Chao-Xiang Wu, Ming Fang, Xu Zhang, Guan-Ping Jin. Removal of rubidium from brine by an integrated film of sulfonated polysulfone/graphene/potassium copper ferricyanide [J]. Chinese Journal of Chemical Engineering, 2024, 69(5): 112-121. |
[8] | Hebin Li, Zifei Meng, Dehua Wang, Ye Lu, Longlong Jiang, Le Zhang, Hanbin Wang, Xiaoxiong Wang. Application of different fiber structures and arrangements by electrospinning in triboelectric nanogenerators [J]. Chinese Journal of Chemical Engineering, 2024, 69(5): 177-191. |
[9] | Liuyu Song, Haibo Li, Pengkai Wang, Yu Shang, Yue Yang, Zhaoyu Wu. MXene: Promising materials for magnesium-ion batteries [J]. Chinese Journal of Chemical Engineering, 2024, 69(5): 199-211. |
[10] | Zhihao Yang, Li Chen, Jian Xue, Miaomiao Su, Fangdan Zhang, Liangxin Ding, Suqing Wang, Haihui Wang. Nano-alumina@cellulose-coated separators with the reinforced-concrete-like structure for high-safety lithium-ion batteries [J]. Chinese Journal of Chemical Engineering, 2024, 68(4): 83-93. |
[11] | Kexin Zhang, Wenmin Zhang, Heng An, Zhe Huang, Yanzhen Wen, Xiangyu Jiao, Yongqiang Wen. Porous nanofibrous dressing enables mesenchymal stem cell spheroid formation and delivery to promote diabetic wound healing [J]. Chinese Journal of Chemical Engineering, 2024, 68(4): 156-164. |
[12] | Wei Guo, Yan Zhang, Xiaxin Lei, Shuang Wang. An effective strategy of constructing multi-metallic oxides of ZnO/CoNiO2/CoO/C microflowers for improved supercapacitive performance [J]. Chinese Journal of Chemical Engineering, 2024, 67(3): 1-8. |
[13] | Li Wang, Ji-Xiang Guo, Rui-Ying Xiong, Chen-Hao Gao, Xiao-Jun Zhang, Dan Luo. In situ modification of heavy oil catalyzed by nanosized metal-organic framework at mild temperature and its mechanism [J]. Chinese Journal of Chemical Engineering, 2024, 67(3): 166-173. |
[14] | Feifan Yang, Yuanhang Jin, Jiangying Liu, Haipeng Zhu, Rong Xu, Fenjuan Xiangli, Gongping Liu, Wanqin Jin. Regulation of interlayer channels of graphene oxide nanosheets in ultra-thin Pebax mixed-matrix membranes for CO2 capture [J]. Chinese Journal of Chemical Engineering, 2024, 67(3): 257-267. |
[15] | Kunpeng Yang, Yuanjun Liu, Yuyu Liu, Xingmei Guo, Xiangjun Zheng, Junhao Zhang, Guoxing Zhu. Ligand-tuning of coordination compound for improved oxygen evolution [J]. Chinese Journal of Chemical Engineering, 2024, 76(12): 292-300. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 3
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 15
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||