[1] R.C. Shen, C.C. Qin, L. Hao, X.Z. Li, P. Zhang, X. Li, Realizing photocatalytic overall water splitting by modulating the thickness-induced reaction energy barrier of fluorenone-based covalent organic frameworks, Adv. Mater. 35 (39) (2023) e2305397. [2] Z.W. Heng, W.C. Chong, Y.L. Pang, L.C. Sim, C.H. Koo, Photocatalytic degradation of organic pollutants using green oil palm frond-derived carbon quantum dots/titanium dioxide as multifunctional photocatalysts under visible light radiation, Chin. J. Chem. Eng. 51 (2022) 21-34. [3] L.P. Xu, P.K. Wong, Z.F. Jiang, J.C. Yu, Iodide-mediated selective photocatalytic treatment of phenolic pollutants, Appl. Catal. B Environ. 338 (2023) 123080. [4] X.Y. Sui, J.C. Wang, Z.Q. Zhao, B. Liu, M.M. Liu, M. Liu, C. Shi, X.J. Feng, Y.X. Fu, D.Y. Shi, S.Y. Li, Q.S. Qi, M. Xian, G. Zhao, Phenolic compounds induce ferroptosis-like death by promoting hydroxyl radical generation in the Fenton reaction, Commun. Biol. 7 (1) (2024) 199. [5] J.H. Chaudhuri, D. Chatterjee, Modelling of chemical kinetics in the presence of hydrodynamic cavitation for wastewater treatment applications, Chem. Eng. Sci. 295 (2024) 120167. [6] K.V. Divya Lakshmi, T. Siva Rao, J. Swathi Padmaja, I. Manga Raju, M. Ravi Kumar, Structure, photocatalytic and antibacterial activity study of Meso porous Ni and S Co-doped TiO2 nano material under visible light irradiation, Chin. J. Chem. Eng. 27 (7) (2019) 1630-1641. [7] Y.X. Deng, M.Y. Xing, J.L. Zhang, An advanced TiO2/Fe2TiO5/Fe2O3 triple-heterojunction with enhanced and stable visible-light-driven Fenton reaction for the removal of organic pollutants, Appl. Catal. B Environ. 211 (2017) 157-166. [8] H.C. Li, P.C. Ji, Y. Teng, H.L. Jia, M.Y. Guan, Preparation of carbon coated hyperdispersed Ru nanoparticles supported on TiO2 HER electrocatalysts by dye-sensitization, New J. Chem. 47 (20) (2023) 9628-9634. [9] H. Tan, X.M. Gu, P. Kong, Z. Lian, B. Li, Z.F. Zheng, Cyano group modified carbon nitride with enhanced photoactivity for selective oxidation of benzylamine, Appl. Catal. B Environ. 242 (2019) 67-75. [10] J. Wang, R. Sheng, J.X. Xiao, L. Lu, Y.H. Peng, D. Gu, W. Xiao, Matched redox kinetics on triazine-based carbon nitride/Ni(OH)2 for stoichiometric overall photocatalytic CO2 conversion, Small 20 (29) (2024) e2309707. [11] T. Sun, C.X. Li, Y.P. Bao, J. Fan, E.Z. Liu, S-scheme MnCo2S4/g-C3N4 heterojunction photocatalyst for H2 production, Acta Phys. Chim. Sin. (2023) 2212009. [12] W. Liu, H.N. Che, B. Liu, Y.H. Ao, Unveiling the mechanism on photocatalytic singlet oxygen generation over rationally designed carbonylated carbon nitride, J. Mater. Chem. A 12 (22) (2024) 13427-13434. [13] H.F. Liu, H.J. Li, J.M. Lu, S. Zeng, M. Wang, N.C. Luo, S.T. Xu, F. Wang, Photocatalytic cleavage of C-C bond in lignin models under visible light on mesoporous graphitic carbon nitride through π-π stacking interaction, ACS Catal. 8 (6) (2018) 4761-4771. [14] G.L. Wang, Y. Zhao, H.R. Ma, C.J. Zhang, X.L. Dong, X.F. Zhang, Enhanced peroxymonosulfate activation on dual active sites of N vacancy modified g-C3N4 under visible-light assistance and its selective removal of organic pollutants, Sci. Total Environ. 756 (2021) 144139. [15] X.S. Wang, C. Zhou, R. Shi, Q.Q. Liu, G.I.N. Waterhouse, L.Z. Wu, C.H. Tung, T.R. Zhang, Supramolecular precursor strategy for the synthesis of holey graphitic carbon nitride nanotubes with enhanced photocatalytic hydrogen evolution performance, Nano Res. 12 (9) (2019) 2385-2389. [16] Q. Yang, W.B. Yang, F.F. He, K.W. Liu, H.M. Cao, H.J. Yan, One-step synthesis of nitrogen-defective graphitic carbon nitride for improving photocatalytic hydrogen evolution, J. Hazard. Mater. 410 (2021) 124594. [17] Y.R. Zhao, M.Y. Sun, F. Zhou, G. Xu, Ultratrace aromatic anhydride dopant as intermediate island to promote charge transfer of graphitic carbon nitride for enhancing the photocatalytic degradation of rhodamine B, Langmuir 40 (3) (2024) 1858-1868. [18] X. Rao, H.L. Dou, W.L. Chen, D. Long, S.H. Zheng, Z.Q. Chen, A. Abou Hassan, E.O.M. Ruiz, Y.P. Zhang, Embedding sodium ions in graphitic carbon nitride vacancies for visible light photocatalytic H2 evolution, ACS Appl. Nano Mater. 3 (5) (2020) 4663-4669. [19] K. Wada, N. Ohtani, Fabrication and characterization of carbon nitride fluorescent material using annealed melamine, Phys. Status Solidi B:. 256 (6) (2019) 256. https//doi.org/10.1002/pssb.201800521. [20] X. Cao, M. Liao, X. Gu, L. Li, G. Wu, Studies on intermolecular electron transfer using electrostatic potential approach, Acta Chim. Sinica 50 (1992) 456-460. [21] G.A. Meek, A.D. Baczewski, D.J. Little, B.G. Levine, Polaronic relaxation by three-electron bond formation in graphitic carbon nitrides, J. Phys. Chem. C 118 (8) (2014) 4023-4032. [22] J.D. Xu, B. Lan, L.Y. Zhu, H. Xu, X.Y. Chen, W.J. Li, Y.F. Yuan, J.F. Yan, Y.M. Li, Synthesis and properties of ferrocene conjugated macrocycles with illusory topology of the Penrose stairs, Chem. Res. Chin. Univ. 40 (5) (2024) 881-886. [23] Q.C. Li, Y. Zhang, Y.B. Zeng, M.Y. Ding, Ordered porous nitrogen-vacancy carbon nitride for efficient visible-light hydrogen evolution, J. Colloid Interface Sci. 642 (2023) 53-60. [24] M.E. Wang, C.Z. Fan, S.J. Yang, M.L. Liu, J. Luo, Y.N. Liu, L. Tang, Z.X. Gong, S.W. Leng, Nitrogen deficient carbon nitride for efficient visible light driven tetracycline degradation: A combination of experimental and DFT studies, Catal. Sci. Technol. 10 (20) (2020) 6800-6808. [25] C. Cometto, R. Kuriki, L.J. Chen, K. Maeda, T.C. Lau, O. Ishitani, M. Robert, A carbon nitride/Fe quaterpyridine catalytic system for photostimulated CO2-to-CO conversion with visible light, J. Am. Chem. Soc. 140 (24) (2018) 7437-7440. [26] G.M. Ba, T.T. Huo, Q.H. Deng, H.P. Li, W.G. Hou, Mechanochemical synthesis of nitrogen-deficient mesopore-rich polymeric carbon nitride with highly enhanced photocatalytic performance, ACS Sustainable Chem. Eng. 8 (50) (2020) 18606-18615. [27] Y.P. Wang, Q.L. Li, L.C. Zhang, Y.K. Wu, H. Chen, T.H. Li, M.W. Xu, S.J. Bao, A gel-limiting strategy for large-scale fabrication of Fe-N-C single-atom ORR catalysts, J. Mater. Chem. A 9 (11) (2021) 7137-7142. [28] W.D. Oh, C.Z. Ng, S.L. Ng, J.W. Lim, K.H. Leong, Rapid degradation of organics by peroxymonosulfate activated with ferric ions embedded in graphitic carbon nitride, Sep. Purif. Technol. 230 (2020) 115852. [29] I. Khan, N. Baig, A. Qurashi, Graphitic carbon nitride impregnated niobium oxide (g-C3N4/Nb2O5) type (II) heterojunctions and its synergetic solar-driven hydrogen generation, ACS Appl. Energy Mater. 2 (1) (2019) 607-615. [30] Z.Y. Gu, Z.T. Cui, Z.J. Wang, K.S. Qin, Y. Asakura, T. Hasegawa, S. Tsukuda, K. Hongo, R. Maezono, S. Yin, Carbon vacancies and hydroxyls in graphitic carbon nitride: Promoted photocatalytic NO removal activity and mechanism, Appl. Catal. B Environ. 279 (2020) 119376. [31] C. Lu, X. Chen, Nanostructure engineering of graphitic carbon nitride for electrochemical applications, ACS Nano 15 (12) (2021) 18777-18793. [32] J.T. Gao, Y. Wang, D. Shijian Zhou, D. Wei Lin, P. Yan Kong, A facile one-step synthesis of Fe-doped g-C3N4 nanosheets and their improved visible-light photocatalytic performance, ChemCatChem 9 (9) (2017) 1708-1715. [33] Q.Z. Gao, J. Xu, Z.P. Wang, Y.F. Zhu, Enhanced visible photocatalytic oxidation activity of perylene diimide/g-C3N4 n-n heterojunction via π-π interaction and interfacial charge separation, Appl. Catal. B Environ. 271 (2020) 118933. [34] Z.H. Han, G. Chen, C.M. Li, Y.S. Zhou, Y.D. Hu, W.N. Xing, Biocoordination polymer cross-linking structure to a 3D star topology inorganic photocatalyst nanocrystal with improved hydrogen evolution performance, Inorg. Chem. 57 (21) (2018) 13067-13070. [35] M.X. Liu, J.L. Liu, Z.Q. Zeng, X. Wang, J.F. Jia, X.M. Gu, Z.F. Zheng, Steric hindrance effect induced photopurification of styrene oxide over surface modified polymeric carbon nitride, Sep. Purif. Technol. 300 (2022) 121929. [36] Y. Nosaka, A.Y. Nosaka, Generation and detection of reactive oxygen species in photocatalysis, Chem. Rev. 117 (17) (2017) 11302-11336. [37] H. Tan, P. Kong, R.G. Zhang, M.T. Gao, M.X. Liu, X.M. Gu, W.F. Liu, Z.F. Zheng, Controllable generation of reactive oxygen species on cyano-group-modified carbon nitride for selective epoxidation of styrene, Innovation 2 (1) (2021) 100089. [38] M. Zhang, M. de Respinis, H. Frei, Time-resolved observations of water oxidation intermediates on a cobalt oxide nanoparticle catalyst, Nat. Chem. 6 (4) (2014) 362-367. [39] X. Zhang, P.J. Ma, C. Wang, L.Y. Gan, X.J. Chen, P. Zhang, Y. Wang, H. Li, L.H. Wang, X.Y. Zhou, K. Zheng, Unraveling the dual defect sites in graphite carbon nitride for ultra-high photocatalytic H2O2 evolution, Energy Environ. Sci. 15 (2) (2022) 830-842. [40] M.X. Liu, M.T. Gao, L.J. Pei, Y.L. Ji, X.M. Gu, H. Wang, H. Tan, J. Zhao, J.F. Jia, Z.F. Zheng, Tailoring phenol photomineralization pathway over polymeric carbon nitride with cyano group multifunctional active sites, Appl. Catal. B Environ. 284 (2021) 119710. [41] T. Holopainen, L. Alvila, J. Rainio, T.T. Pakkanen, IR spectroscopy as a quantitative and predictive analysis method of phenol-formaldehyde resol resins, J. Appl. Polym. Sci. 69 (11) (1998) 2175-2185. [42] L.L. Wang, W.Y. Cheng, J.X. Wang, J. Yang, Q.Q. Liu, Construction of intramolecular and interfacial built-in electric field in a donor-acceptor conjugated polymers-based S-scheme heterojunction for high photocatalytic H2 generation, Chin. J. Catal. 58 (2024) 194-205. |